DANIEL LUPOVICI BORGER

PROGRAMACAO DA PRODUCAO - MINIMIZACAO DO ATRASO
TOTAL NO AMBIENTE FLOW SHOP COM RESTRICOES DE
DISPONIBILIDADE

SAO PAULO 2021

DANIEL LUPOVICI BORGER

PROGRAMACAO DA PRODUCAO - MINIMIZACAO DO ATRASO
TOTAL NO AMBIENTE FLOW SHOP COM RESTRICOES DE
DISPONIBILIDADE

Trabalho de Formatura apresentado a Escola
Politécnica da Universidade de Sao Paulo para
obtencao do diploma de Engenheiro de
Producéo.

Orientadora: Prof. Dra. Débora Pretti Ronconi

SAO PAULO 2021

Autorizo a reproducéo e divulgacao total ou parcial deste trabalho, por qualquer meio
convencional ou eletrdnico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogacao-na-publicagédo

Borger, Daniel Lupovici

PROGRAMACAO DA PRODUCAO — MINIMIZACAO DO ATRASO TOTAL
NO AMBIENTE FLOW SHOP COM RESTRICOES DE DISPONIBILIDADE / D.
L. Borger -- Sdo Paulo, 2021.

59 p.

Trabalho de Formatura - Escola Politécnica da Universidade de Sao
Paulo. Departamento de Engenharia de Producao.

1.PESQUISA OPERACIONAL 2.PROGRAMACAO DA PRODUCAO
I.Universidade de Sao Paulo. Escola Politécnica. Departamento de
Engenharia de Produgéo II.t.

AGRADECIMENTOS

Aos meus pais Roberto e Eliane e ao meu irmé&o David pelo carinho e apoio durante
todos os momentos.

As minhas avds, aos meus primos e tios queridos pelos bons momentos em familia
gue compartilhamos e por todo apoio.

Aos meus amigos da faculdade e a Equipe de Xadrez da Poli, pelo companheirismo

e por tornarem essa jornada politécnica mais valiosa e prazerosa.
A Lara, pelo amor, parceria e pela motivacio que eu precisei nos momentos dificeis.

A professora Dra. Débora Pretti Ronconi, por despertar o meu interesse na area de

Pesquisa Operacional e por todo apoio, orientagao e paciéncia neste projeto.

If you wait for luck to turn up,
life becomes very boring.

(Mikhail Tal)

RESUMO

Este trabalho teve como objeto de estudo o problema de minimizagéo do
atraso total em um flow shop permutacional de duas maquinas com uma
janela de indisponibilidade non-resumable (que ndo permite um job ser
interrompido pela indisponibilidade e retomado depois) em cada uma das
magquinas, inédito na literatura. Foi criada uma formulacdo de Programacéao
Linear Inteira Mista desse problema e uma implementacdo com o solver
Gurobi para resolver o problema de maneira étima.

Como o problema estudado neste trabalho é NP-Dificil, foram também
propostos métodos heuristicos, sendo duas heuristicas construtivas baseadas
no algoritmo NEH e uma regra de despacho EDD (Earliest Due Date). Esse
uso de heuristicas € importante para problemas NP-Dificeis porque em geral
instncias grandes desses problemas ndo podem ser resolvidos por métodos
exatos em um tempo razoavel para a aplicagéo.

LISTA DE FIGURAS

Figura 1: Exemplo de schedule de maquina anica com 3 JoDS.ccccuviiiiiiiiiiiiiiiiiiieeeee, 13
Figura 2: Exemplo de schedule de maquinas paralelas com 3 maquinas e 9 jobs............... 14
Figura 3: Exemplo de schedule flow shop com 3 maquinas e 3 jobs..........ccccceiiiiiiiiiinnnen. 14
Figura 4: Exemplo de job shop com 3 maquinas e 2 jobs. Observa-se que 0s jobs tem

roteiros diferentes: J1 segue M1 -> M2 -> M3 enquanto J2 segue M2 -> M1 -> M3............. 15

Figura 5: Exemplo de open shop com 3 maquinas e 2 jobs. Considerando os mesmos jobs e
maquinas apresentados na figura 4 (job shop), aqui o planejador tem a liberdade de alterar o
roteiro dos jobs. No caso, o roteiro do J1 foi alterado para M1 -> M3 ->M2. 15
Figura 6: Representacao dos diferentes tipos de indisponibilidade para um schedule de um
workshop de uma maquina e um job (com tempo de processamento fixo) com diferentes
tipos de restricdo de disponibilidade: a) resumable, b) non-resumable e ¢) semiresumable. A

cor preta representa periodo de indisponibilidade..............ccccoeeeiiieiiiiiiiii e, 17
Figura 7: Grafico de Gantt da solugéo da instancia exemplo 1. A cor preta representa
periodo de iNdiSponIDIIAAUE.c..euiiiiiiie e 29
Figura 8: Grafico de Gantt da solugéo da instancia exemplo 2. A cor preta representa
periodo de iNdiSponIDIIAAUE.c..uuiiiiiiie e 29
Figura 9: Grafico de Gantt da solug&o da instancia exemplo 3. A cor preta representa
periodo de iNdiSPoNIDIIAAUE.c..euiiiiiiie e 29
Figura 10: Representacdo em grafico de Gantt de cada uma das trés possiveis inser¢ées do
job J3: a) na primeira posi¢éo, b) na segunda posi¢ao e c) na terceira posi¢ao. 32

Figura 11: Representacdo dos cenarios considerados para a geracao das datas de entrega.
P é o limitante inferior do MakeSPan.oouiiiiiiiiiii s 40

LISTA DE TABELAS

Tabela 1: Tabela dos jobs da instancia exemplo, com seus tempos de processamento e data

Lo T =T] (=T - USSP 28
Tabela 2: Jobs da instancia exemplo ordenados em ordem nao decrescente pelo Limite
Tl (=T T e [o I AN 1 =T o LR 31
Tabela 3: Resultados da analise geral com 0 ME&todo exatovceeeieeeeiiiiiiiiiinieeeeeeeinns 34
Tabela 4: Resultados da analise geral com os métodos heuristicos em compara¢ao com o
10157000 (o I =) - (o SRR 36
Tabela 5: Comparacao dos tempos de execucao do método exato e dos métodos

P BUITSTICOS. i 37
Tabela 6: Resultados da analise de sensibilidade, considerando o Gap (em unidades de
tempo) médio entre a solugéo 6tima e a solucdo da heuristica NEH-H................ccccccvvnnn. 40

Tabela 7: Resultados da analise de sensibilidade, considerando o Gap (em porcentagem)
médio entre a solucdo 6tima e a solucdo da heuristica NEH-H..............oooooiiiiii, 40

SUMARIO

N 1 1 o Yo [V Y= T TP 11
R O O 1= o 1P 11
I © o TT=3 1Y/ o TSR 12

2 Revisédo da Literatura e Descricdo do Problemaccccccovviiiiiiiii 13
2.1 Programacado da Producédo (Scheduling)ccoeiiieiiiiiiiiiicie e 13
2.2 Problemas com Restricdo de Disponibilidade...................uuviiiiiiiiiiiiiiiiiiiiiiiiis 16
2.3 FIOW SO ettt 19

2.3.1 Flow Shop com Restrigdo de Disponibilidadeccccccvvvviiiiiiiiiiiiiii, 19
2.3.2 Flow Shop com Restricdo de Disponibilidade e Funcdo Objetivo de Atraso......... 21

3 FOrmulagao MatemMALICAccvviviiiiiiiiiiiiiiiiieieeeeeeeeeeeee ettt 23
3.1 Formulacdo do problema F2, A11|nr — @|Tjuuuumimmmmiiiiiiiiiiiiiiiiiiiiieee 23
3.2 Formulacdo do problema F2, h21|nr — @|Tjuuuuuenmmnmniniiiiiiiiiiiiiiiiiiiiiiinninnnnnnnnnnnnnes 25
3.3 Formulacdo do problema F2, Aj 1[Ny — @|Tj c...uuuuuuumnmmnniniiiiiiiiiiiiiiiiiiiiininnnennnnnnnnnnnne 26
3.4 INSTANCIAS EXEIMPIO ...ttt 28

4 Proposta de Heuristicas EfiCIENTESciiiiiiiiiiciin e 30
4.1 Heuristica EDD (Earliest DUE Date)ccuieeiiiiiiiiiiiiieeaeeeseiiiiinieee e 30
4.2 HEUNSHCA NEH.......coiiiiiiiei et aaeas 30

5 Experimentos COMPULACIONAIS ..ccooeeeiiiiiiiiiiiii e e e e e e e e e 33
5.1 INSTANCIAS ...tttttteteitettteeeeeeeee ettt 33
5.2 ANALISE GEIA.....oiiiiiiiiiie e 34
5.3 Andlise de SenSibIlIdade.cooiiiiiiiiiiiie e 39

B CONCIUSED ..ottt e e e ettt e e e et a e e e 42

7 Referéncias BibliografiCascccuuuiiiiiiiiiii e 43

Apéndice A — Modelagem do Problema em Python com o solver Gurobi..................... 47

Apéndice B — Codigo das Heuristicas EDD, NEH-T € NEH-H...........ccccccvviiiiiiiiiiiiiiiiiinn, 52

11

1 Introducao
1.1 Contexto

O problema de Programacdo da Producdo (Scheduling) tem papel
importante na tomada de decisOes relacionadas a alocagdo de recursos,
sendo muito aplicado em sistemas produtivos, de manufatura e de
processamento computacional (Pinedo 2012).

Melhores programas de producéo (schedules) trazem uma vantagem
competitiva para a empresa atraves de ganhos em produtividade dos recursos
e outras eficiéncias relacionadas a gestdo de operacdes, 0 que motiva a
busca por abordagens mais eficazes de Programacdo da Producao

(Rodammer e White Jr 1988).

Os problemas de Programacao da Producao costumam ser categorizados
pela configuracédo dos recursos no sistema produtivo (explicado na Secéo 2.1
em mais detalhe). Este trabalho explora um problema na configuracao de flow
shop, layout muito comum na manufatura, em que m maquinas estao
alocadas em série para o processamento das atividades (jobs) e todos os jobs
devem seguir a mesma sequéncia de maquinas (Pinedo 2012).

Outro fator que define um problema de programacdo da producédo € o
critério de otimizacéo. O problema estudado neste trabalho busca minimizar o
atraso total, que é um objetivo muito importante para sistemas de manufatura
(Raman, 1995), j& que datas de entrega sdo muito comuns nesses sistemas
(Panwalkar, Smith e Seidmann, 1982) e atraso podem levar a insatisfacdo dos
clientes e aumento dos custos (Sen e Gupta, 1984).

Além da configuracdo dos recursos e do critério de otimizacdo, um
problema de Programacdo também € definido por restricdes adicionais
especificas do problema. Neste trabalho é assumida uma restricdo FIFO (First
In First Out) para o problema, uma restricdo que € amplamente usada para
problemas de Flow Shop e que é condizente com praticas comuns da
indUstria de manufatura. A restricdo FIFO implica que os jobs seguem a
mesma ordem de processamento em todas as maquinas, e portanto apenas
uma sequéncia permutacional dos jobs ja representa toda a sequéncia de
producdo em todas as maquinas. Um flow shop com a restricdo FIFO é
chamado de flow shop permutacional.

Por fim, uma ultima restricdo adotada no problema estudado neste
trabalho é a existéncia de janelas de indisponibilidade. A maior parte da
literatura de Programacéo da Producao parte da hipotese de que 0s recursos
estdo disponiveis durante todo o horizonte de tempo considerado, porém
muitas vezes essa hipotese ndo € condiz com o cenario real de producao
industrial. Segundo Ma, Chu e Zuo (2010) alguns cenarios em que as

12

maguinas nao estdo disponiveis durante todo o periodo sdo por quebra de
uma maquina, manutencdo preventiva e também gquando uma maquina esta
indisponivel no inicio do periodo por ainda ter tarefas de um periodo anterior
para finalizar. Neste trabalho, considera-se um flow shop com até um periodo
de indisponibilidade em cada uma das maquinas.

Em problemas de Programacdo da Producdo com janelas de
indisponibilidade, pode-se considerar que uma tarefa pode comecar a ser
processada por uma maguina antes de seu periodo de indisponibilidade e ter
seu processamento retomado pela maquina assim que a indisponibilidade
termina, ou pode-se considerar que uma tarefa ndo pode ser interrompida por
uma janela de indisponibilidade da maquina em que esta sendo processada.
Ambos o0s casos tem aplicacdo na industria, dependendo do contexto
especifico de producéo. Neste trabalho considera-se o segundo caso, que na
literatura é conhecido como non-resumable.

1.2 Objetivo

O objetivo deste trabalho é estudar o problema de minimizacdo do atraso
total em um flow shop permutacional de duas maquinas com uma janela de
indisponibilidade non-resumable em cada uma das maquinas. Com este
enfoque sera apresentada uma formulacdo de Programacao Linear Inteira
Mista desse problema, além disso trés métodos heuristicos adaptados de
meétodos conhecidos da literatura serdo propostos.

Como o problema estudado neste trabalho é NP-Dificil, € de grande
importancia estudar o resultado de métodos heuristicos, pois em muitas
situacBes a resolucdo de instancias grandes por métodos exatos € inviavel
em um tempo razoavel para a aplicacdo. Sabe-se que o problema tratado
neste trabalho é NP-Dificil dado que Du e Leung (1990) provaram que 0O
problema de minimizacdo do atraso em uma Unica maquina € NP-Dificil, e o
problema do flow shop com janelas de indisponibilidade é uma generalizacao
do problema em maquina Unica sem restricbes de disponibilidade.

13

2 Revisao da Literatura e Descricao do Problema

Neste capitulo é feita uma revisdo da literatura com uma visdo geral de
Programacao da Producéo, em seguida mais especificamente sobre problemas
de flow shop com restricdes de disponibilidade e problemas de flow shop com
objetivo de minimizar o atraso.

2.1 Programacao da Producao (Scheduling)

Pinedo (2012) define a Programacdo da Producédo, ou Scheduling, como o
exercicio de alocar recursos para a realizacdo de tarefas durante determinados
periodos de tempo, otimizando um ou mais critérios. Os recursos a serem
alocados e as tarefas a serem realizadas podem ser diversos, como maquinas
em uma oficina para realizarem processos produtivos, pistas de um aeroporto a
serem alocadas para pousos e decolagens ou ainda unidades de processamento
de um computador para executarem programas de um computador. (Pinedo
2012). Esses recursos a serem alocados sdo normalmente chamados de
‘maquinas’ e as tarefas a serem realizadas de ‘jobs’ (sendo que um job pode
requerer uma ou mais operacdes a serem realizadas pelas maquinas).

Os problemas de Programacdo da Producdo podem ser categorizados
através de diversos critérios. O principal critério para uma categorizacdo mais
geral desses problemas € a presenca de elementos aleatérios: problemas que
nao possuem elementos aleatdrios sdo chamados deterministicos, enquanto os
gue possuem elementos aleatérios sdo chamados estocasticos.

Outro critério importante para categorizar os problemas de Programacdo da
Producdo é a configuracdo das maquinas. As principais configuracbes de
magquinas sao: maquina unica, maquinas em paralelo, flow shop, job shop, e

open shop, que séo explicadas a seguir (Pinedo 2012):

7

Maquina unica: O caso da maquina Unica € o0 mais simples dentre as
configuragbes de maquinas, sendo um caso especifico de todas as outras

configuragbes de maquinas mais complexas. Um exemplo é apresentado na
Figura 1.

M1 J1 J2 J3

Figura 1: Exemplo de schedule de maquina Unica com 3 jobs.

14

Maquinas em paralelo: H4& m maquinas em paralelo. Cada job requer uma
Gnica operacdo a ser realizada por alguma das m maquinas (ou por um
subconjunto dessas maquinas). Problemas nessa configuracdo de maquinas
costumam ser categorizados ainda pela relacdo entre a velocidade de
processamento de cada uma das maquinas paralelas, podendo ser maquinas
idénticas, com velocidades idénticas (ou seja, seguem uma propor¢gao no tempo
de processamento que independe do job especifico a ser processado), ou ndo
relacionadas. Um exemplo é apresentado na Figura 2.

Figura 2: Exemplo de schedule de maquinas paralelas com 3 maquinas e 9 jobs.

Flow shop: H& m maquinas em série. Cada job tem que ser processado em
cada uma das m maquinas. Além disso, todos os jobs devem seguir 0 mesmo
roteiro (ou seja, ser processado primeiro na maquina 1, depois na maquina 2, e
assim por diante até a maquina m). Apds concluir seu processamento em uma
maquina, o job entra em uma fila para ser processado pela maquina seguinte.
Problemas de flow shop normalmente possuem uma restricdo ‘Primeiro a Entrar,
Primeiro a Sair’ (PEPS, ou FIFO de ‘First In, First Out’), que proibe um job de
passar na frente de outro na fila. Um flow Shop que possui a restricdo FIFO é
chamado flow shop permutacional. Um exemplo é apresentado na Figura 3.

M1 J1 J3
w2 P
M3 J1 J3

Figura 3: Exemplo de schedule flow shop com 3 maquinas e 3 jobs.

Job shop: H& m maquinas. Cada job tem o seu préprio roteiro determinado
para seguir, devendo passar em ordem por uma determinada sequéncia de

15

maquinas. Dessa forma, o job shop € uma generalizacdo do flow shop. Um
exemplo é apresentado na Figura 4.

M1 J1 J2

M2 J2 J1

M3 J2 J1

Figura 4: Exemplo de job shop com 3 maquinas e 2 jobs. Observa-se que os jobs tem roteiros
diferentes: J1 segue M1 -> M2 -> M3 enquanto J2 segue M2 -> M1 -> M3.

Open shop: H& m maquinas. Cada job deve ser processado por um sub-
conjunto de maquinas, porém o roteiro que deve seguir ndo é predeterminado e é
uma decisdo a ser tomada durante a programacdo da producdo. Um exemplo é
apresentado na Figura 5.

M1 J1 J2

M2 J2 J1

M3 J1 J2

Figura 5: Exemplo de open shop com 3 maquinas e 2 jobs. Considerando os mesmos jobs e
magquinas apresentados na figura 4 (job shop), aqui o planejador tem a liberdade de alterar o
roteiro dos jobs. No caso, o roteiro do J1 foi alterado para M1 -> M3 -> M2.

Dentre os trabalhos pioneiros de Programacéo da Producédo, um destaque é o
de Johnson (1954), que estuda o problema de minimizacdo do makespan
(instante de conclusdo do ultimo job processado) em flow shops de 2 ou 3
maquinas. Nesse trabalho ele apresenta uma regra simples que minimiza o
makespan encontrando a soluc¢do otima e que ficou conhecida como Algoritmo
de Johnson.

Seguindo a notagdo do Pinedo (2012), um problema de programacgéo da
producdo pode ser descrito por um trio de hiperparametros a|B|y. a descreve a
configuracdo das maquinas e usualmente tem s6 um elemento. 3 descreve

16

caracteristicas e restrices adicionais do processamento e pode ter nenhum, um,
ou varios elementos. y descreve o objetivo a ser minimizado e usualmente sé tem

um elemento. Tomando como exemplo o problema P3|prec|Cmax , P3 indica
que trata-se de um problema de méaquinas paralelas com 3 maquinas, prec
indica que o problema inclui restricbes de precedéncia (alguns jobs tem a
restricdo de ser feito depois de algum outro job) e Cmax indica que o objetivo a
ser minimizado é o makespan (maior tempo de concluséo de job).

2.2 Problemas com Restricdo de Disponibilidade

Na literatura de Scheduling (Programacédo da Producao), € usual assumir a
hip6tese de que todas as maquinas estdo disponiveis durante todo o horizonte
de planejamento. Entretanto, em uma grande variedade de situacdes reais essa
hipotese nédo é de fato verdadeira. Situacbes comuns em que ndo ha completa
disponibilidade das maquinas sao horizontes com atividade de manutencéo
preventiva de uma ou mais maquinas e horizontes em que ha possibilidade de
guebra de alguma maquina. (Schmidt 2000).

Nos problemas com Restricdo de Disponibilidade, ha uma distingdo entre
diferentes tipos de restricdo relacionados a possibilidade de um job retomar o seu
processamento apos ser interrompido por um periodo de indisponibilidade da
magquina em que comecou a ser processado. A definicdo de indisponibilidade
resumable e non-resumable é feita por Lee (1996) e a de semiresumable por
Lee(1999). O caso resumable significa que quando um processamento de um job
é interrompido por indisponibilidade da maquina, ele pode ser retomado de onde
parou (sem perda da fracdo ja processada), enquanto o caso non-resumable
significa que ele ndo pode ser retomado e deve ser reiniciado do zero. Ja o caso
semiresumable € uma generalizacdo desses, definindo uma variavel alfa entre 0
e 1 indicando a fracdo que deve ser reprocessada (do processamento
interrompido por indisponibilidade de maquina), de forma que alfa=0 corresponde
ao caso resumable e alfa=1 ao caso non-resumable. Um exemplo simples com
apenas 1 job e comparando esses trés casos € apresentado na Figura 6.

17

a) M1 J1 . J1

>
b) M1 . J1

>
o M1 J1 . J1

>

Figura 6: Representacao dos diferentes tipos de indisponibilidade para um schedule de um
workshop de uma maquina e um job (com tempo de processamento fixo) com diferentes tipos de
restricdo de disponibilidade: a) resumable, b) non-resumable e ¢) semiresumable. A cor preta
representa periodo de indisponibilidade.

Adiri et al. (1989) estudam o problema de minimizag&o de flowtime (soma dos
tempos de finalizacdo de todos os jobs) em uma maquina com um periodo de
indisponibilidade (non-resumable), lidando tanto com o caso estocéstico em que
o momento de falha da maquina e o tempo de reparo sdo aleatorios como com o
caso deterministico em que essas variaveis ja sdo conhecidas antes do
planejamento. Os autores mostram que o problema é NP-Dificil e estudam a
aplicacdo da heuristica SPT (Shortest Processing Time ou Menor Tempo de
Processamento) nele. Esse problema foi também estudado por Lee e Liman
(1992), que apresentam uma prova mais simples de que o problema € NP-Dificil
e revisam a margem de erro relativa da aplicacdo do SPT. Sadfi et al. (2005)
propdem um algoritmo MSPT (SPT Modificado) para esse problema, He, Zhong e
Gu (2006) apresentam um algoritmo PTAS (Polynomial Time Approximation
Scheme) e Breit (2007) apresenta um algoritmo paramétrico O(nlog n) capaz de
obter melhores margens de erro de pior caso.

Lee (1991) estuda o problema de minimizacdo do makespan em um ambiente
com m magquinas paralelas, em que cada maquina i so se torna disponivel em um
instante a; arbitrario. Ele desenvolve uma heuristica MLPT (Modified Longest
Processing Time ou Maior Tempo de Processamento Modificado) para lidar com
o problema. Lin, He, Yao e Lu (1997) estudam as margens de erro do algoritmo
MLPT proposto por Lee (1991) e prop6em mais duas variagdes de heuristicas
MLPT. Esse problema é também estudado por Kellerer (1998), que desenvolve
uma heuristica de aproximacdo dual para o problema, e também estuda o
mesmo problema com o tempo de conclusdo minimo Cmin (instante em que
alguma das maquinas acaba de processar todos os jobs a ela assignados) como
funcéo objetivo a ser maximizada. Chang e Hwang (1999) também estudam esse
problema, aplicando a heuristica MULTIFIT para resolvé-lo. Lu e Posner (1993)
estudam o problema de minimizacdo do makespan em um Open Shop de 2
magquinas com a restricdo de que uma das maquinas so torna-se disponivel em
um instante t e propéem um método de resolu¢cdo em tempo polinomial.

t

18

Lee e Liman (1993) estudam o problema de minimizacéo do flowtime em um
ambiente de duas maquinas paralelas, em que uma das maquinas so funciona
por um determinado tempo e depois se torna indisponivel. Eles mostram que o
problema é NP-Dificil e apresentam um algoritmo de programacado dinamica
pseudo-polinomial. Mosheiov (1994) estuda um problema similar com m
maquinas, em que cada maquina tem um horizonte de disponibilidade [x;, yj], e
demonstra que a heuristica SPT é assintoticamente Otima para o problema
conforme o0 numero de jobs aumenta.

Lee (1996) além de definir as indisponibilidades resumable e non-resumable
estuda diversos problemas deterministicos com esses tipos de indisponibilidade
com as configuracdes de maquina Unica e maquinas paralelas e com diferentes
funcdes objetivo. Para cada problema ele apresenta um algoritmo 6timo de
tempo polinomial ou uma prova de que o problema é NP-Dificil.

Hwang e Chang (1998) e Hwang, Lee e Chang (2005) estudam o problema de
minimizacdo de makespan em uma configuracdo de maquinas paralelas em que
cada maquina pode ter um intervalo de indisponibilidade non-resumable e
analisam os casos de pior performance do algoritmo LPT (Longest Processing
Time ou Maior Tempo de Processamento). Eles concluem que o principal fator
que afeta a performance no pior caso do algoritmo LPT € o nimero de maquinas
que podem trabalhar simultaneamente e ndo o niumero de maquinas que podem
ficar indisponiveis. Liao et al. (2005) estudam um caso especifico deste
problema, com duas maquinas em que apenas uma delas possui periodo de
indisponibilidade, e apresenta um algoritmo baseado no algoritmo TMO (Two
Machine Optimization) proposto por Ho e Wong (1995), que resolve o problema
encontrando o 6timo. Lin e Liao (2007) generalizam o resultado de Liao et al.
(2005) com a restricdo de que ambas as maquinas podem ficar indisponiveis em
vez de apenas uma, e apresentam um algoritmo baseado em busca lexicografica
que resolve o problema encontrando o étimo.

Seguindo a notacdo a|Bly apresentada no final da Secdo 2.1, ha alguns
termos especificos usados para descrever problemas com restricdo de
disponibilidade: Ao hiperparametro a, que normalmente possui apenas um
elemento, acrescenta-se outro elemento hjk descrevendo quantas janelas (indice
k) ha e em quais maquinas (indice j) (Ma, Chu, Zuo 2010). No hiperparametro 3
inclui-se um termo indicando o tipo de indisponibilidade entre r —a, nr —a e sr —
a, que representam respectivamente janelas resumable, non-resumable e
semiresumable. O termo a na expressao € abreviacdo de availability constraint
(restricao de disponibilidade).

19

2.3 Flow Shop

Em varios ambientes de manufatura e montagem, cada job deve passar por
uma série de operacdes. Frequentemente, essas operacoes dever ser feitas em
todos os jobs na mesma ordem, implicando que todos os jobs devem seguir o
mesmo roteiro. Entdo, assume-se que as maquinas sao organizadas em série e
o ambiente de producéo é chamado de flow shop. (Pinedo 2012)

O artigo de Johnson (1954) apresentado na secdo anterior, como um dos
pioneiros na area de pesquisa de Programacao da Producdo também foi um dos
pioneiros no estudo de flow shop.

2.3.1 Flow Shop com Restrigcado de Disponibilidade

Em relacdo a problemas de flow shop com restricbes de disponibilidade, a
survey Ma, Chu, Zuo (2010) afirmam que ha muitos estudos para casos com
duas maquinas, porém poucos para casos com multiplas maquinas. Além disso,
indicam que quase toda pesquisa na area tem como critério de otimizacdo o
makespan, e que o estudo do problema com diferentes critérios de otimizacéo é
uma direcao interessante para futura pesquisa. Lee (1997) é pioneiro nessa area,
estudando o problema de flow shop de duas maquinas com indisponibilidade
(resumable) em uma das maquinas e buscando minimizar o makespan. Ele
afirma que o problema é NP-Dificil para duas maquinas se alguma tiver um
‘buraco’ de disponibilidade, enquanto que o caso classico sem restricdo de
disponibilidade pode ser resolvido em tempo polinomial pelo Algoritmo de
Johnson proposto por Jonhson (1953).

Considerando o caso de minimizacdo do makespan em um flow shop de duas
magquinas com restricdo de disponibilidade resumable apenas na primeira, Lee
(1997) mostra que a aplicacdo do Algoritmo de Johnson tem margem de erro
relativa menor ou igual a 1. Allaoui et al. (2006) estudaram a aplicacdo do
Algoritmo de Johnson a esse problema e estabeleceram as condi¢des nas quais
esse algoritmo retorna a solugdo Otima. Lee (1997) também prop6s uma
heuristica de tempo O(nlog n) com margem de erro relativa de até 1/2. Cheng e
Wang (2000) mostraram que essa margem de %2 era justa e propuseram uma
heuristica melhorada, com uma margem de erro de até 1/3 que mais tarde foi
melhorada para 1/4 por Breit (2004). Ng e Kovalyov (2004) estudam propriedades
de uma programacdo Otima para esse problema e propdem um esquema de
aproximacdo em tempo totalmente polinomial (FPTAS Fully Polynomial Time
Approximation Scheme). Mais tarde Wang e Cheng (2007a) e Wang e Cheng
(2007b) estudam o problema considerando também o tempo de setup e
desenvolvem um esquema de aproximagcdo em tempo polinomial (PTAS

20

Polynomial Time Approximation Scheme) e uma heuristica com margem de erro
relativo menor ou igual a 2/3 para resolvé-lo.

Ainda, no caso de duas maquinas com restricdo de disponibilidade
resumable, mas com restricdo de disponibilidade apenas na segunda maquina,
Lee (1997) mostra que a aplicacdo do Algoritmo de Johnson tem margem de erro
relativa menor ou igual a 1/2 e propde uma heuristica de tempo O(nlog n) com
margem de erro menor ou igual a 1/3. Similar ao caso de indisponibilidade na
primeira maquina, Ng e Kovalyov (2004) também estudam as propriedades de
uma programacao 6tima com indisponibilidade na segunda maquina. Wang e
Cheng (2007b) estudam uma variante desse problema com tempo de setup e
apresentam heuristica com margem de erro relativo menor ou igual a 2/3 para
resolvé-lo.

Breit (2006) estuda a variante preemptiva (permite interrupgdes arbitrarias nos
processamentos) do problema com duas maquinas com um buraco de
disponibilidade na primeira ou na segunda maquina, e propde um PTAS para
resolvé-lo.

Para o problema em que cada uma das duas maquinas pode ter um numero
arbitrario de buracos de disponibilidade, Btazewicz et al. (2001) apresentam duas
heuristicas construtivas e uma heuristica de busca local para resolvé-lo. Kubiak
et al. (2002) consideram os problemas com varios buracos apenas na maquina 1,
apenas na maquina 2 e em ambas, mostrando que o problema é NP-Dificil no
forte sentido mesmo que apenas uma das maquinas tenha namero arbitrario de
buracos. Kubzin, Potts e Strusevich (2009) propdem uma heuristica para o caso
em que apenas M1 tem numero arbitrario de buracos.

Lee (1999) estuda o flow shop de duas maquinas com indisponibilidade
semiresumable abordando também os casos particulares resumable e non-
resumable, apresenta um algoritmo de programacédo dinamica pseudo-polinomial
gue resolve o problema encontrando o 6timo e fornece algumas heuristicas com
analise margem de erro para elas.

Xu et al. (2018) apresentam diferentes formulacdes de programacao linear
inteira mista (MILP - Mixed Integer Linear Programming) para o flow shop de
duas maquinas com uma restricdo de disponibilidade em uma das méaquinas e
avaliam o desempenho de cada formulacdo na resolugdo de instancias de
problemas. Resultados numéricos mostraram que cada formulacdo podia
resolver instancias de até 100 jobs em tempo razoavel.

Aggoune (2004) é pioneiro em estudar o flow shop de m maquinas com
restricbes de disponibilidade, considerando o problema com mdultiplas
indisponibilidades em cada maquina e minimizando o makespan. Ele mostra que

o problema é NP-dificil no sentido forte, e por isso propde uma heuristica
genética e uma de tabu search para resolver o problema. Mais tarde Aggoune e

21

Portmann (2006) apresentam uma abordagem geométrica temporizada
(temporizer geometric) para resolver o problema com dois jobs e uma heuristica
para conseguir uma solucédo aproximada para o problema com mais jobs.

2.3.2 Flow Shop com Restricao de Disponibilidade e Funcéo Objetivo de
Atraso

O problema de minimizacdo do atraso total em um flow shop é NP-Dificil.
Chega-se facilmente a essa conclusdo a partir do resultado de Du e Leung
(1990) de que a minimizagdo do atraso total em uma maquina é NP-Dificil, ja que
o problema com uma méaquina é um caso especifico de flow shop.

O critério de atraso total é importante para a industria de manufatura, pois
quando um job ndo € completado antes do seu prazo ha alguns custos para a
empresa (Armentano e Ronconi 1999). Segudo Sen e Gupta (1984), esses
custos podem ser penalidades contratuais, dano a imagem da empresa que
aumenta a chance de perder o cliente para futuros trabalhos e dano a reputacéo
gue diminui a chance de novos clientes buscarem a empresa.

Kim (1993) revisa a literatura inicial de flow shops minimizando o atraso total,
apresentado diferentes abordagens heuristicas para resolver o problema.
Armentano e Ronconi (1999) estudam a aplicacdo de uma heuristica tabu search
para resolver esse tipo de problema e obtém resultados promissores em
experimentos numéricos. Hasija e Rajendran (2004) propdem uma heuristica
baseada em recozimento simulado (simulated annealing) para o problema, com
resultados bons em experimentos numéricos. Vallada, Ruiz e Minella (2008)
fazem uma revisao da literatura de heuristica para a minimiza¢ao do atraso total
no flow shop de m-maquinas. Framinan e Leisten (2008) desenvolvem como
heuristica um algoritmo guloso (greedy), com bons resultados nos experimentos
numeéricos. Vallada e Ruiz (2010) propdem algoritmos genéticos para lidar o
problema, e esses algoritmos provaram-se eficazes nos resultados dos
experimentos numéricos. Karabulut (2016) propde um algoritmo guloso iterado
para resolver o problema, obtendo resultados superiores a outros algoritmos
gulosos.

Fernandez-Viagas, Valente e Framinan (2018) realizam uma abrangente
avaliacao das heuristicas e meta-heuristicas com melhores desempenhos para o
problema e propdem uma heuristica de beam search e um conjunto de
algoritmos gulosos iterados com 8 diferentes procedimentos para a etapa de
destruicdo e construgdo do algoritmo. Nos experimentos computacionais, a
heuristica beam search se destaca com desempenho superior as demais
heuristicas construtivas, enquanto o algoritmo guloso iterado com o
procedimento de troca adjacente aleatoria teve o melhor desempenho entre as
meta-heuristicas analisadas.

22

Ao conhecimento do autor, ainda ndo foram publicados artigos cientificos
lidando com o flow shop de 2 maquinas com restricdo de indisponiblidade tendo
como funcéo objetivo o atraso total.

Neste trabalho sdo formuladas trés variantes do problema de minimizacédo do
atraso em um flow shop de duas maquinas com restricbes de disponibilidade
non-resumable: a) Com uma janela de indisponibilidade na primeira maquina -

F2,hy1|Inr —a| X T;; b) Com uma janela de indisponibilidade na segunda
maquina - F2, hy,|nr —a| X Tj; ¢) Com uma janela de indisponibilidade em
cada uma das maquinas - F2, hj;[nr — a| X T;. Vale ressaltar que as variantes
a) e b) sdo casos especificos da variante c).

23

3 Formulacéo Matematica

Nesse capitulo sdo formuladas utilizando programacéo linear inteira mista as
trés variantes do problema de minimizacédo do atraso em um flow shop de duas
maquinas com restricdes de disponibilidade non-resumable apresentadas no final

da segdo 2.32: F2,hy{|Inr — a| X T;, F2,hy |nr —a| X T; e
F2,hj|nr —a| X T;.

3.1 Formulagéo do problema F2, hy;|nr — a| X T;

Nessa formulacdo baseada nas ideias de Wilson (1989) e de Xu et al.(2018),
o periodo de indisponibilidade non-resumable € tratado como o job de indice n+1.

Considere que Sy, P1 n+1 € dp41 S80 0 instante de inicio da indisponibilidade na

primeira maquina, a duracdo dessa indisponibilidade (que € o tempo de
processamento do job n+1 na maquina 1) e a data de entrega para esse job de

indice n+1. Esse job tera instante de inicio em s; e de término em S; + Pg 4.
Note-se que P, 41 (0 tempo de processamento do job n+1 na maquina 2) vale

0, e que d,,, sera o término do periodo de indisponibilidade somado do maior
tempo de processamento na segunda maquina, ou seja o instante s; +

Pin+1 + max(pyj).
Variaveis:

x;j: Variavel binaria que tem valor 1 se o job i foi programado como o j-ésimo
job, e valor 0 caso contrério.

Srj: Variavel que indica o instante em que o j-ésimo job comeca a ser

processado pela maquina r

Tj: Variavel que indica qual foi o atraso do j-ésimo job.

Parametros:

Pri- Tempo de processamento do job i na maquina r.

d;. Prazo de entrega para o job i.

S1: Instante em que comeca o periodo de indisponibilidade na maquina 1.

M Vvalor suficientemente grande.

24

. 1)
minZTj
j=1
n+1 (2)
le]_l i=1,2, ,n+1
j=1
n+1 (3)
inj_l j=12,....n+1
=1
Slj - Sl S M(]. - xn+1’j)] = 1,2,...,n+1 (4)
Sij — $1 = — M — Xpy4q,j) j=12..,n+1 (5)
n+1 (6)
Srj+1 = Spj + an- Xij j=12,....n;r=1,2
i=1
n+1 (7)
S2j ZS81j+) DuXij j=12..,n+1
i=1
511 =0 (8)
n+1 (9)
T, =25, + Z Xij (P21 — dy) j=12,...,n+1
i=1
T; =0 j=12,...,n+1 (10)
x;; € {0,1} ij=12..,n+1 (11)

A funcéo objetivo (1) define como objetivo minimizar a soma do atraso de cada um
dos jobs (considerando todas as posicbes dos jobs e do periodo de
indisponibilidade). O conjunto de restricdes (2) garante que cada job (incluindo a
indisponibilidade) tem uma Unica posi¢cdo na sequéncia de producdo, enquanto o
conjunto de restricbes (3) garante que cada posicdo da sequéncia de producédo esta
associada a um unico job (ou a indisponibilidade). Os conjuntos de restricdes (4) e
(5) garantem que o periodo de indisponibilidade se iniciara em s;. E interessante
notar que nessas inequacfes, com o uso do M suficientemente grande, essas

restricoes apenas restringem de fato o espaco das solugoes quando X, 4 ; € igual
1, e nesse caso as restricoes (4) e (5) ficam S;; — s, < 0e 55 —s; =20

respectivamente (com as quais chega-se a Slj = 51).

. A restricdo (6) define que o processamento de um job em uma das maquinas s6
pode iniciar ap0s o job anterior acabar de ser processado. A restricdo (7) define que
0 processamento de um job na segunda maquina s6 pode comecar apos esse job
acabar de ser processado pela primeira maquina. A restricdo (8) define que o

25

primeiro job s6é pode comecar a ser processado na primeira maquina a partir do
instante 0. A restricdo (9) define que o atraso do job na posicao j € maior ou igual a
diferenca entre seu instante de conclusdo e o seu prazo de entrega, enquanto a
restricdo (10) define que o atraso de cada posi¢cdo ndo pode ser negativo. Por fim, a

restricao (11) define a restricao binaria para cada uma das variaveis x;;.

3.2 Formulagéo do problema F2, hyy [nr — a| Y. Tj

Também baseada nas ideia de Wilson (1989), e de Xu et al. (2018), a
formulacdo com restricdo de disponibilidade non-resumable na maquina 2
também trata o periodo de indisponibilidade como o job de indice n+1. Porém,

esse periodo inicia em s, e terminando em S, + P, 41 j& que a restricdo

passou a ser na maquina 2. A formulacdo desse problema é muito similar a
formulagdo com restricdo apenas na maquina 1, com alteragcées nas restricdes

(4) e (5) referentes ao periodo de indisponibilidade. Note-se que p; 4, vale 0, e
que d,,; serd o término do periodo de indisponibilidade, ou seja o instante

Sz t Pan+1-
Variaveis:

x;j: Variavel binaria que tem valor 1 se o job i foi programado como o j-ésimo
job, e valor 0 caso contrério.

Syj

processado pela maquina r

Variavel que indica o instante em que o0 j-ésimo job comeca a ser

Tj: Variavel que indica qual foi o atraso do j-ésimo job.

Parametros:

pri- Tempo de processamento do job i na maquina r.

d;: Prazo de entrega para o job i.

S, Instante em que comeca o periodo de indisponibilidade na maquina 2.

M Valor suficientemente grande.

(12)

n
minz T]
j=1

26

n+1 (13)
Dy =1 i=12..n+1
j=1
n+1 (14)
inj—1 j=12..,n+1
=1
SZj Y < M(l xn+1])] = 1,2,...,n+1 (15)
Szj - SZ Z_M(l - xn+1’j)] = 1,2,...,n+1 (16)
n+1 (17)
Srj+1 = Srj + anx” j=12,....n;r=1,2
i=1

n+1 (18)
52] Zslj‘l‘ ZPUXU j:1,2, ,n+1

i=1
51120 (29)

n+1 (20)
T, 25, + Z xij (p2i — do) j=12..n+1

=1
T, =20 j=12,...,.n+1 (21)
xij € {0,1} l,] = 1,2,...,Tl+1 (22)

A funcéo objetivo (12) é a mesma que a (1). Os conjuntos de restri¢cdes (13), (14),
(17), (18), (19), (20), (21) e (22) sdo os mesmas que 0s (2), (3), (6), (7), (8), (9), (10)
e (11) respectivamente. J4 os conjuntos de restricdes (15) e (16) garantem que o
periodo de indisponibilidade se iniciara em s,. E interessante notar que nessas
inequacdes, com o uso do M suficientemente grande, essas restricdes apenas

restringem de fato o espaco das solucGes quando X, .4 ; € igual 1.

3.3 Formulagéo do problema F2, hj; |nr — a| X T;

Com base nessas duas formulacdes, é proposta uma formulacdo que generaliza
as duas, havendo possibilidade de haver uma restricdo de disponibilidade em
qualquer uma das maquinas ou em ambas. Nessa formulagdo, o periodo de
indisponibilidade na primeira maquina seréa tratado como o job de indicen+l1eoeo
periodo de indisponibilidade na maquina 2 sera tratado como o job de indice n + 2.

Variaveis:

xij. Variavel binaria que tem valor 1 se o job i foi programado como o j-ésimo
job, e valor 0 caso contrario.

Srj

processado pela maquina r

Tj: Variavel que indica qual foi o atraso do j-ésimo job.

Parametros:

pri- Tempo de processamento do job i na maquina r.

d;. Prazo de entrega para o job i.

S1: Instante em que comeca o periodo de indisponibilidade na maquina 1.

S, Instante em que comeca o periodo de indisponibilidade na maquina 2.

M Vvalor suficientemente grande.

n
minZTj
j=1

n+1

inj =1

j=1

n+1

inj =1

i=1

S1j — 81 = M1 — xp4q5)

S1j — 1 2—MQA = xp4aj)

Saj = S2 < M(1 — Xpya)

Syj — S 2 -M(1 - xn+2,j)
n+1

Srj+1 2 Spj t Z Pri Xij
i=1

n+1

Spj =51, + z P1i Xij
im1

S, >0
n+1

Tj =Sy + Z Xij (P20 — dy)
i=1

T, >0

xij

e {0,1}

j=12..,n+2

j=12,....n+2
j=12,....n+2
j=12,....n+2
j=12,....n+2
j=12,..,n+1;
r=12

j=12..n+2

j=12,...n+2

j=12...,n+2
ij=12..n+2

27

Variavel que indica o instante em que o0 j-ésimo job comeca a ser

(23)

(24)

(25)

(26)
(27)
(28)
(29)
(30)

(31)

(32)
(33)

(34)
(35)

28

A funcéo objetivo (23) é a mesma que a (1). Os conjuntos de restricdes (24), (25),
(26), (27), (30), (31), (32), (33), (34) e (35) sdo os mesmos que os (2), (3), (4), (5)
(6), (7), (8), (9), (10) e (11) respectivamente do problema com restricdo apenas na
primeira maquina. Ja os conjuntos de restricdes (28) e (29) sdo 0s mesmos que as
(15) e (16) do problema com restricdo na segunda maquina.

Nesses trés problemas apresentados, é usado um parametro M ‘suficientemente
grande’, ou seja, que sempre tem um valor superior ao modulo do lado esquerdo da
equacdo em que se encontra. Para todos esses problemas, um valor adequado de

M ¢é a soma do instante de inicio do periodo de indisponibilidade que comeca mais
tarde com o maior tempo de processamento de algum job em qualquer das
maquinas: max(sy,s,) + max(py) (i = 1,2,...,n+2,r =1,2).

3.4 Instancias exemplo

Para ilustrar o funcionamento dos modelos propostos foram criadas algumas
instancias exemplo, com 6 jobs cada, para apresentar uma solucdo étima em cada

modelo. Note-se que um parametro t,. € utilizado para referir-se ao término do
periodo de indisponibilidade na maquina r.

Os dados das instancias exemplo sdo apresentados na Tabela 1.

Tabela 1: Tabela dos jobs da instancia exemplo, com seus tempos de processamento e data de

entrega.
#]; P1i D2i d;
J1 5 2 11
J2 3 3 15
J3 4 2 16
Ja 6 1 20
Js 2 4 22
Js 3 3 26

Além dos jobs na Tabela 1, a instancia exemplo 1 tem uma janela de
indisponibilidade na primeira maquina (M1) entre s; = 9et; = 10.

Resolvendo essa instancia através do modelo de programacédo linear inteira
mista (1) com o solver Gurobi, chegou-se a sequéncia otima: (J1, J3,
Indisponibilidade M1, J2, J5, J4, J6), com atraso total de 4.

29

M1 J1 J2 J5 J4

J1 J2 J5 J4

22 23 24 25 26 27 28

M2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figura 7: Grafico de Gantt da solucéo da instancia exemplo 1. A cor preta representa periodo de
indisponibilidade.

A instancia exemplo 2 possui 0s mesmos jobs, porém em vez de ter
indisponibilidade na M1 possui indisponibilidade na M2, tendo como parametros

s, = 15 e t, = 16. Resolvendo o problema através do modelo (2) chega-se a
solucéo o6tima: (J2, J1, J3, Indisponibilidade, J5, J4, J6), com atraso total de 1.

M1 J2 J3 J5 J4 J6

M2 J2 J3 I J5 J4 J6
ot
24 25 26 27 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figura 8: Grafico de Gantt da solucéo da instancia exemplo 2. A cor preta representa periodo de
indisponibilidade.

J& a instancia exemplo 3 possui 0s mesmos jobs das instancias anteriores, e
possui tanto a indisponibilidade na M1 como na M2 (com 0S mesmos parametros).
Resolvendo o problema através do modelo (3) chega-se a solucédo 6tima: (J2, J1,
Indisponibilidade M1, Indisponibilidade M2, J3, J5, J4, J6), com atraso total de 7.

M1 J2 J3 J5 J4

M2 J3 J5 J4

27 28

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figura 9: Gréfico de Gantt da solucdo da instancia exemplo 3. A cor preta representa periodo de
indisponibilidade.

30

4 Proposta de Heuristicas Eficientes

Como o problema de minimizacédo do atraso total no flow shop de duas maquinas
com restricdes de disponibilidade é NP-Dificil, pode ser inviavel resolver o problema
com meétodos exatos em um tempo aceitavel. Por isso, neste capitulo proponho
heuristicas adaptadas da literatura para resolver o problema em um tempo reduzido.

4.1 Heuristica EDD (Earliest Due Date)

A heuristica EDD, uma das principais utilizadas para problemas de Scheduling
de minimizacdo do atraso, consiste em ordenar os jobs em ordem ndo decrescente
pela data de entrega.

4.2 Heuristica NEH

A heuristica NEH, introduzida no artigo Nawaz et al. (1983), é uma das principais
heuristicas construtivas utilizadas para problemas de flow shop permutacional, em
especial para problemas de minimizacdo do makespan. Essa heuristica é constituida
por 2 etapas:

Etapa 1. Todos os jobs sdo ordenados segundo algum critério, por exemplo o
LPT (Maior tempo de processamento).

Etapa 2: Seguindo a ordem da etapa 1, os jobs sdo adicionados um a um a
solucéo, inseridos na posi¢cdo que maximiza (ou minimiza) uma dada funcao objetivo
para a sequéncia da solucao.

Para resolver os problemas propostos nesse trabalho, serd adotada a heuristica
NEH com os critérios:

Para a etapa 1, os jobs sé&o ordenados em ordem nao decrescente de um limitante
inferior LI; = d; — py; — Dy;. Esse limitante inferior representa o valor minimo
de atraso de cada tarefa e foi introduzido na literatura como um componente da
regra de despacho MDD (Modified Due Date) de Baker e Bertrand (1982). Esse
limitante foi usado (no caso geral para m maquinas) também para ordenar os jobs
por Amentano e Ronconi (1999).

Para a etapa 2, o critério para selecionar a posicdo em que o job sera inserido
foram utilizados dois critérios: Menor atraso total (da sequéncia parcial) e um critério
hibrido do atraso total com o makespan. O critério atraso total € a soma dos atrasos
de todos os jobs incluidos na sequéncia parcial, 0 que coincide com a funcgéo
objetivo quando todos os jobs foram incluidos na sequéncia. O critério hibrido é o
mesmo que o critério de atraso total, porém em caso de empate no atraso total o
algoritmo seleciona a posi¢cdo que minimiza o0 makespan. Nos proximos capitulos, a

31

heuristica NEH com critério de atraso total e a heuristica NEH com critério hibrido
serdo referidas como NEH-T e NEH-H respectivamente.

Para ilustrar o funcionamento da heuristica NEH-H, considere a instancia
exemplo 3 — com os jobs da Tabela 1 e janelas de indisponibilidade entre s; = 9 e
t; = 10 na primeira maquina (M1) e entre s, = 15 e t, = 16 na segunda
maquina (M2). Realizando a etapa 1 nessa instancia, calcula-se o LI; de cada job e

em seguida ordenam-se os jobs em ordem ndo decrescente de LI;. O resultado
dessa etapa 1 € apresentado na Tabela 2. Ao final da etapa 1 a ordenacéo dos jobs
é (J1,J2.J3.Js.Js,J¢) € sera utilizada na etapa 2.

Tabela 2: Jobs da instancia exemplo ordenados em ordem néo decrescente pelo Limite Inferior do

Atraso
#] P1i P2i d; LI;
T, 5 2 11 4
7, 3 3 15 9
A 4 2 16 10
T 6 1 20 13
Js 2 4 22 16
2 3 3 26 20

Na etapa 2, cada job sera inserido iterativamente na solu¢do. Seguindo a
ordem da Tabela 2, primeiro adiciona-se o J;. Em seguida adiciona-se o J,, e para

isso avalia-se qual o atraso total T e qual o makespan C,,,, para cada uma das
posi¢cdes possiveis para insercdo. Se o J, for inserido na primeira posi¢cado (formando
a sequéncia J,,/;) o T sera 0 e o C,,,4, Sera 10, e se for inserido na segunda posicéo
(formando a sequéncia J;,/,) 0 T serd 0 e 0 Cyq, S€ra 11. Pelo critério de insergao
hibrido usado no NEH-H, o J, sera inserido na primeira posi¢édo, pois o atraso T
empatou e o C,,,, € menor com a insergdo na primeira posicao.

Em seguida insere-se o job J; e avaliam-se as sequéncias (J3,/2,/1), (J2,J3,/1)
e (J2,J1,J3) , cada uma relativa a uma possivel insercdo do J;. Essas possiveis
insercées sao ilustradas na Figura 10. A sequéncia com o menor T é (J,,/1,/3) que
possui atraso total igual a 2, entdo o J; é inserido na terceira posicao.

Esse processo é repetido até o ultimo job, que nesse exemplo seria o J,, ser
inserido a solucdo. Seguindo a heuristica NEH-H chega-se a sequéncia
(2,J1.J3.Js.JarJ6) com atraso total igual a 7. Nesse caso, a sequéncia gerada pela
heuristica NEH-H é igual a solugdo 6tima do problema apresentada na Figura 9,

32

porém ndo ha garantia de que a sequéncia gerada pela heuristica sera a solucao
otima.

a) M1 J3 J2
M2 J3
1 2 3 4 5 6 7
b) M1 J2 J3
M2 J2

J3

M2 J2 J3

t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2?

Figura 10: Representagdo em gréafico de Gantt de cada uma das trés possiveis inser¢8es do job J5: a)
na primeira posicao, b) na segunda posi¢éo e ¢) na terceira posicao.

33

5 Experimentos Computacionais

Foi realizada uma andlise geral comparando resultados e tempo de execucao do
meétodo exato, das heuristicas NEH (com critério de inser¢cdo de atraso total e com
critério de insercao hibrido) e da heuristica EDD.

Todos os experimentos foram executados em um computador com processador
Intel Core i5 de 8GB de memoria e implementados com linguagem Python 3.8. As
formulacdes propostas foram resolvidas utilizando o solver Gurobi versédo 9.1.0 com
as configuracdes padréao.

Nas instancias executadas pelo Gurobi, definiu-se o tempo maximo de execucao
em 30 minutos. Quando o programa nao conseguir chegar a solucdo 6tima nesse
tempo, utilizou-se para comparacdo a melhor solu¢do encontrada e foi incluido o
limite inferior (lower bound) encontrado.

5.1 Instancias

Para avaliar o impacto das janelas de indisponibilidade no atraso total e a
performance das heuristicas propostas, foram realizados experimentos em
instancias de diversos tamanhos, e com diferentes situacdes de indisponibilidade de
maquinas.

Para uma analise geral comparando os resultados dos métodos exatos com 0s
das heuristicas propostas, foram geradas instancias com numero de jobs 5, 10, 15
20, 30, 50, 60, 70, 80, 90, 100 (seguindo Xu et al. 2018). Para cada um desses
tamanhos do problema, foram geradas 5 instancias com o0s tempos de
processamento em cada uma vindos de uma distribuicéo discreta uniforme entre 1 e

100. Foram definidos periodos de indisponibilidade entre s, = (Qi=; pri)/2 e t, =
s, + 10 (também seguindo Xu et al. 2018).

Seguindo Armentano e Ronconi (1999), para as datas de entrega foi utilizada
uma distribuicdo uniforme de inteiros entre P(1—T —R/2)e P(1—T + R/2),
em que P é um limite inferior do makespan, T é o fator de atraso e R é a amplitude
de dispersdo das datas de entrega. O limite inferior do makespan usado é P =
min(py;) + Qi p2i) + t; — S, que é uma adaptagdo de Pan et al. (2002) com
o acréscimo do tempo de indisponibilidade da segunda maquina. Para a analise
geral foram ultilizados como parametros T = 0.4 e R = 0.6, sendo esses valores

os utilizados para o cenario de alto fator de atraso e baixa amplitude das datas de
entrega em Armentano e Ronconi (1999) .

Para uma andlise de sensibilidade, foram geradas instancias com 15 jobs e
variando os valores dos parametros T e R. Foram usados 0.3, 0.4 e 0.5 como
valores de T e 0.5, 0.6 e 0.7 como valores de R. Para cada combinacdode T e R

34

foram geradas 50 instancias, em que os tempos de processamento e os periodos de
indisponibilidade seguiram o modelo utilizado para a analise geral.

5.2 Analise Geral

Na Tabela 3 sdo apresentados os resultados da andlise geral com o método
exato. Nessa tabela, a coluna Upper Bound indica o atraso total na melhor solucao
encontrada, sendo essa solucdo 6tima nas instancias em que esse valor coincide

com o Lower Bound. Para calculo do gap foi utlizada a formula:
Upper Bound—Lower Bound
Gap (%) =

Upper Bound

Na Tabela 4 sdo apresentados os resultados da andlise geral com os métodos
heuristicos, e na Tabela 5 sdo apresentados os tempos de execu¢cdo com cada um
dos métodos.

Pode-se observar que o método exato foi capaz de encontrar a solugdo 6tima em
menos de 3 segundos para todas as instancias com até 15 jobs, e em menos de 30
minutos para todas as instancias com até 30 jobs. Ja as heuristicas NEH-T e NEH-H
e EDD tiveram tempo de execucéo inferior 2 segundos para todas instancias, sendo
que o NEH-T e NEH-H tiveram tempo muito proximo em todas as instancias e o EDD
teve tempo inferior a 0,01 segundo em todas as instancias.

Comparando os resultados das heuristicas com o Upper Bound encontrado pelo
método exato, observa-se que o gap médio das heuristicas NEH-T, NEH-H e EDD
foram 15,2%, 9,4% e 49,3% respectivamente. Ademais, das 55 instancias
analisadas, essas heuristicas chegaram a um gap inferior a 5% em 15, 22 e 1
instancias respectivamente. Também € interessante notar que apenas a heuristica
NEH-H foi capaz de superar o Gurobi em algumas instancias (em que o Gurobi ndo
foi capaz de chegar na solucao 6tima em até 30 minutos), 4 instancias ao todo com
Gap médio de -1,4%.

Considerando esses resultados, conclui-se que a heuristica NEH-H teve o melhor
desempenho e é executavel em tempo muito baixo (inferior a 2 segundos) para
instancias de até 100 jobs.

Tabela 3: Resultados da analise geral com o método exato

vsovs | miania | U5rer | Loner [capvg | Jempode,
5 1 395 395 0,00 0,08
5 2 676 676 0,00 0,05
5 3 184 184 0,00 0,06
5 4 429 429 0,00 0,11

5 5 140 140 0,00 0,06
10 1 618 618 0,00 0,29
10 2 747 747 0,00 0,31
10 3 96 96 0,00 0,27
10 4 876 876 0,00 0,23
10 5 571 571 0,00 0,27
15 1 736 736 0,00 151
15 2 1212 1212 0,00 1,52
15 3 1440 1440 0,00 0,39
15 4 756 756 0,00 0,56
15 5 408 408 0,00 2,58
20 1 1718 1718 0,00 17,69
20 2 343 343 0,00 3,95
20 3 1851 1851 0,00 581,19
20 4 2125 2125 0,00 0,78
20 5 1973 1973 0,00 4,68
30 1 2643 2643 0,00 512
30 2 1928 1928 0,00 12,83
30 3 2383 2383 0,00 59,41
30 4 1722 1722 0,00 419,25
30 5 1385 1385 0,00 1695,79
50 1 1430 1429 0,07 1800,00
50 2 5894 5256 10,82 1800,00
50 3 6550 5859 10,55 1800,00
50 4 995 995 0,00 361,33
50 5 5515 5039 8,63 1800,00
60 1 1897 1401 26,15 1800,00
60 2 7088 6199 12,54 1800,00
60 3 1642 1377 16,14 1800,00
60 4 1133 1113 1,77 19,14
60 5 2580 2580 0,00 1557,7
70 1 4265 3168 25,72 1800,00
70 2 2492 1914 23,19 1800,00
70 3 3994 3591 10,09 1800,00
70 4 3176 3059 3,68 1800,00
70 5 9792 9166 6,39 1800,00
80 1 13145 12074 8,15 1800,00
80 2 2636 2531 3,98 1800,00
80 3 12398 10697 13,72 1800,00
80 4 2400 2400 0,00 159,87
80 5 2333 2333 0,00 1233,49
90 1 9965 9166 8,02 1800,00
90 2 3136 3136 0,00 90,36
90 3 6330 4713 25,55 1800,00
90 4 11221 10887 2,98 1800,00

35

90 5 7540 6659 11,68 1800,00
100 1 5073 4768 6,01 1800,00
100 2 5825 5236 10,11 1800,00
100 3 8153 5652 30,68 1800,00
100 4 26988 24796 8,12 1800,00
100 5 7171 4786 33,26 1800,00

Média 5,78

Desvio Padrao 8,93

36

Tabela 4: Resultados da andlise geral com os métodos heuristicos em comparagdo com o0 método

exato.
Ga Ga
Jobs | Instancia ggﬁﬁ; NEH-T | NEH-H EDD NEHF-)T NEHF-)H EDGDaE’%)
(%) (%)
5 1 395 395 395 495 0,0 0,0 20,2
5 2 676 676 676 907 0,0 0,0 25,5
5 3 184 187 187 285 16 16 35,4
5 4 429 429 429 757 0,0 0,0 43,3
5 5 140 140 140 141 0,0 0,0 0,7
10 1 618 628 628 741 16 16 16,6
10 2 747 852 852 1093 12,3 12,3 31,7
10 3 96 96 96 570 0,0 0,0 83,2
10 4 876 917 931 1545 4,5 5,9 43,3
10 5 571 577 577 1346 1,0 1,0 57,6
15 1 736 858 854 834 14,2 13,8 11,8
15 2 1212 | 1512 1250 1786 19,8 3,0 32,1
15 3 1440 | 1755 1818 2207 17,9 20,8 34,8
15 4 756 821 784 1781 7.9 3,6 57,6
15 5 408 1012 866 1677 59,7 52,9 75,7
20 1 1718 | 1777 1777 2495 3,3 3,3 31,1
20 2 343 470 390 526 27,0 12,1 34,8
20 3 1851 | 1999 1999 4700 7.4 7.4 60,6
20 4 2125 | 2376 2373 2550 10,6 10,5 16,7
20 5 1973 | 2410 2385 3796 18,1 17,3 48,0
30 1 2643 | 2695 2774 3833 1,9 4,7 31,0
30 2 1928 | 2344 2344 3061 17,7 17,7 37,0
30 3 2383 | 2945 2933 6327 19,1 18,8 62,3
30 4 1722 | 2279 1991 3825 24,4 13,5 55,0
30 5 1385 | 1499 1471 2497 7.6 5,8 44,5
50 1 1430 | 2557 1733 4331 44,1 17,5 67,0
50 2 5894 | 7387 6998 12089 20,2 15,8 51,2

37

50 3 6550 8396 6837 11586 22,0 4,2 43,5
50 4 995 1371 1045 2872 27,4 4.8 65,4
50 5 5515 5842 5771 9966 5,6 4.4 44,7
60 1 1897 4782 2418 8651 60,3 21,5 78,1
60 2 7088 7091 6932 13569 0,0 -2,3 47,8
60 3 1642 2252 2058 4846 27,1 20,2 66,1
60 4 1133 1182 1229 3763 4,1 7,8 69,9
60 5 2580 3235 2747 6385 20,2 6,1 59,6
70 1 4265 4677 4389 14144 8,8 2,8 69,8
70 2 2492 2868 2470 12096 13,1 -0,9 79,4
70 3 3994 5387 5854 14878 25,9 31,8 73,2
70 4 3176 3478 3383 7202 8,7 6,1 55,9
70 5 9792 10493 10396 21203 6,7 5,8 53,8
80 1 13145 13971 14324 22149 59 8,2 40,7
80 2 2636 3663 3102 5676 28,0 15,0 53,6
80 3 12398 12531 12351 21970 11 -0,4 43,6
80 4 2400 3228 2647 4525 25,7 9,3 47,0
80 5 2333 4412 2534 5640 47,1 79 58,6
90 1 9965 11826 11690 22286 15,7 14,8 55,3
90 2 3136 3425 3176 6592 8,4 1,3 52,4
90 3 6330 7063 7295 19047 10,4 13,2 66,8
90 4 11221 11718 11659 18538 4,2 3,8 39,5
90 5 7540 9861 9504 15420 23,5 20,7 51,1
100 1 5073 9220 5932 15316 45,0 14,5 66,9
100 2 5825 6862 6725 12583 15,1 13,4 53,7
100 3 8153 9095 8012 19434 10,4 -1,8 58,0
100 4 26988 28653 28651 45047 5,8 5,8 40,1
100 5 7171 8883 8763 21427 19,3 18,2 66,5
Média 15,2 9,4 49,3
Desvio Padréo 14,6 9,6 18,0
Tabela 5: Comparacgéo dos tempos de execug¢do do método exato e dos métodos heuristicos.
o Tem~p0 de Tempo de Tem~po de Tempo de
#Jobs | Instancia | Execucéo Gurobi Execucédo NEH-T Execucédo NEH-H Execucdo EDD (s)
(s) (s) (s)
5 1 0,08 <0,01 <0,01 <0,01
5 2 0,05 <0,01 <0,01 <0,01
5 3 0,06 <0,01 <0,01 <0,01
5 4 0,11 <0,01 <0,01 <0,01
5 5 0,06 0,02 <0,01 <0,01

38

10 1 0,29 < 0,01 <0,01 < 0,01
10 2 0,31 < 0,01 <0,01 < 0,01
10 3 0,27 < 0,01 < 0,01 < 0,01
10 4 0,23 0,02 < 0,01 < 0,01
10 5 0,27 < 0,01 < 0,01 < 0,01
15 1 1,51 < 0,01 <0,01 < 0,01
15 2 1,52 < 0,01 0,02 < 0,01
15 3 0,39 < 0,01 < 0,01 < 0,01
15 4 0,56 < 0,01 0,02 < 0,01
15 5 2,58 < 0,01 < 0,01 < 0,01
20 1 17,69 < 0,01 0,02 < 0,01
20 2 3,95 <0,01 0,02 < 0,01
20 3 581,19 0,02 0,02 < 0,01
20 4 0,78 0,02 0,02 < 0,01
20 5 4,68 0,02 0,02 < 0,01
30 1 5,12 0,03 0,03 < 0,01
30 2 12,83 0,03 0,03 < 0,01
30 3 59,41 0,03 0,03 < 0,01
30 4 419,25 0,05 0,03 < 0,01
30 5 1695,79 0,03 0,03 < 0,01
50 1 1800,00 0,16 0,14 < 0,01
50 2 1800,00 0,14 0,14 < 0,01
50 3 1800,00 0,14 0,14 <0,01
50 4 361,33 0,16 0,14 < 0,01
50 5 1800,00 0,16 0,16 < 0,01
60 1 1800,00 0,23 0,25 < 0,01
60 2 1800,00 0,25 0,25 < 0,01
60 3 1800,00 0,25 0,25 < 0,01
60 4 19,14 0,25 0,25 < 0,01
60 5 1557,70 0,25 0,25 < 0,01
70 1 1800,00 0,39 0,39 < 0,01
70 2 1800,00 0,39 0,38 < 0,01
70 3 1800,00 0,39 0,38 < 0,01
70 4 1800,00 0,38 0,39 < 0,01
70 5 1800,00 0,39 0,39 < 0,01
80 1 1800,00 0,59 0,56 < 0,01
80 2 1800,00 0,58 0,58 < 0,01
80 3 1800,00 0,58 0,58 < 0,01
80 4 159,87 0,59 0,59 < 0,01
80 5 1233,49 0,61 0,58 < 0,01
90 1 1800,00 0,88 0,81 < 0,01
90 2 90,36 0,84 0,81 < 0,01
90 3 1800,00 0,81 0,80 < 0,01
90 4 1800,00 0,81 0,83 < 0,01
90 5 1800,00 0,83 0,83 < 0,01
100 1 1800,00 1,13 1,14 < 0,01
100 2 1800,00 1,14 1,13 <0,01

39

100 3 1800,00 1,14 1,14 <0,01
100 4 1800,00 1,14 1,13 <0,01
100 5 1800,00 1,13 1,14 <0,01

5.3 Analise de Sensibilidade

Na Figura 11 séo representados os 9 cenarios de parametros utilizados para
a geracdo das datas de entrega, usando 0,3, 0,4 e 0,5 como valoresde T e 0,5,
0,6 e 0,7 como valores de R. Com um parametro T maior, as datas de entrega
ficam menores (0s jobs devem ser entregues mais cedo para ndo incorrerem em
atraso) e como consequéncia o atraso total deve aumentar. Ja com um
parametro R maior, as datas de entrega tém maior amplitude e variancia.

Foi realizada uma analise de sensibilidade para o problema variando os
parametros T e R e avaliando as diferencas no gap entre a solucdo 6tima e a
solucéo encontrada pela heuristica NEH-H, a heuristica que apresentou a melhor
performance na analise geral. Na Tabela 6 sdo apresentados os resultados do
gap médio em unidades de tempo e na Tabela 7 sdo apresentados os resultados
do gap percentual médio.

4

o

=0,3

0,45 10,95
R=0,5

=0,3

0,4 1
R=0,6

T=0,3

0,35 1,05
R=0,7

=0,4

0,55 1,05
R=0,5

=0,4

0,5 1,1
=0,6

T=0,4

0,45
=0,7

T=0,5
R=0,5

T=0,5

0,6
R=0,6

T=0,5

0,55
=0,7

Figura 11: Representacao dos cenérios considerados para a geracao das datas de entrega. P € 0
limitante inferior do makespan.

Pode-se observar um aumento significativo no gap em unidades de tempo
conforme o parametro T aumenta, porém o gap percentual diminui. J& quando o
parametro R aumenta, pode-se observar um aumento sutil no gap médio tanto

em unidades de tempo como em porcentagem, porém esse aumento € pouco
significativo.

Tabela 6: Resultados da andlise de sensibilidade, considerando o Gap (em unidades de tempo)
médio entre a solucéo étima e a solucao da heuristica NEH-H.

T/R 0,5 0,6 0,7
0,3 89 116 89
0,4 116 160 153
0,5 228 212 259

Tabela 7: Resultados da andlise de sensibilidade, considerando o Gap (em porcentagem) médio entre
a solucao 6tima e a solucdo da heuristica NEH-H.

41

T/IR 0,5 0,6 0,7
0,3 19.3% 24.0% 21.7%
0,4 14.2% 17.1% 18.0%
0,5 14.3% 13.2% 14.8%

42

6 Conclusao

Este trabalho propds estudo do problema de minimizagao do atraso total em
um flow shop permutacional de duas maquinas com uma janela de
indisponibilidade non-resumable em cada uma das maquinas. O problema foi
formulado como um modelo de Programacéo Linear Inteira Mista e implementado
com o solver Gurobi na linguagem Python buscar a solucéo 6tima do problema.

Como o problema estudado neste trabalho € NP-Dificil, ndo foi possivel gerar
a solucao 6tima para a maioria das instancias com 50 jobs ou mais em tempo de
atée 30 minutos, e tornou-se importante propor métodos heuristicos para o
problema. Foram propostas duas heuristicas construtivas baseadas no algoritmo
NEH (NEH-T com critério de atraso e NEH-H com critério hibrido do atraso e do
makespan) e a aplicacdo da regra de despacho EDD (Earliest Due Date). Dessas
heuristicas propostas, a que teve melhor desempenho foi a NEH-H com gap
médio de 9,4% nas 55 instancias analisadas.

Como direcao para pesquisas futuras desse problema, pode ser relevante a
proposicdo de novos métodos heuristicos e meta-heuristicos para resolvé-lo.

43

7 Referéncias Bibliogréaficas

Adiri, 1., Bruno, J., Frostig, E., & Rinnooy Kan, A. H. G. (1989). Single machine flow-time
scheduling with a single breakdown. Acta Informatica, 26, 679—696.

Aggoune, R. (2004). Minimizing the makespan for the flow shop scheduling problem with
availability constraints. European Journal of Operational Research, 153, 534-543.

Aggoune, R., & Portmann, M.-C. (2006). Flow shop scheduling problem with limited machine
availability: A heuristic approach. International Journal of Production Economics, 99, 4-15.

Allaoui, A., Artiba, A., Elmaghraby, S. E., & Riane, F. (2006). Scheduling of a two-machine
flowshop with availability constraints on the first machine. International Journal of Production
Economics, 99, 16-27.

Armentano, V. A., Ronconi, D. P. (1999). Tabu search for total tardiness minimization in
flowshop scheduling problems. Computers & Operations Research, 26(3), 219-235.

Baker, K. R.; Bertrand, J. W. M (1982). A dynamic priority rule for scheduling against due-
dates. Journal of Operations Management, v. 3, p. 37-42.

Btazewicz, J., Breit, J., Formanowicz, P., Kubiak, W., & Schmidt, G. (2001). Heuristic _
algorithms for the two-machine flowshop with limited machine availability. Omega, 29, 599—
608.

Breit, J. (2004). An improved approximation algorithm for two-machine flow shop scheduling
with an availability constraint. Information Processing Letters, 90, 273-278

Breit, J. (2006). A polynomial-time approximation scheme for the two-machine flow shop
scheduling problem with an availability constraint. Computers & Operations Research, 33,
2143-2153.

Breit, J. (2007). Improved approximation for non-preemptive single machine flowtime
scheduling with an availability constraint. European Journal of Operational Research, 183,
516-524.

Chang, S. Y., & Hwang, H.-C. (1999). The worst-case analysis of the MULTIFIT algorithm for
scheduling non-simultaneous parallel machines. Discrete Applied Mathematics, 92, 135-147.

Cheng, T. C. E., & Wang, G. (2000). An improved heuristic for two-machine flowshop
scheduling with an availability constraint. Operations Research Letters, 26, 223-229.

Du, J., & Leung, J. Y. T. (1990). Minimizing total tardiness on one machine is NP-hard.
Mathematics of Operations Research, 15, 483-495 .

Fernandez-Viagas, V., Valente, J., & Framinan, J. (2018). Iterated-greedy-based algorithms
with beam search initialization for the permutation flowshop to minimise total tardiness.
Expert Systems with Applications, 94 , 58—69 .

44

Framinan, J. , & Leisten, R. (2008). Total tardiness minimization in permutation flow shops: A
simple approach based on a variable greedy algorithm. International Journal of Production
Research, 46 (22), 6479—-6498 .

Hasija, S. , & Rajendran, C. (2004). Scheduling in flowshops to minimize total tardiness of
jobs. International Journal of Production Research, 42 (11), 2289-2301

He, Y., Zhong, W., & Gu, H. (2006). Improved algorithms for two single machine Scheduling
problems. Theoretical Computer Science, 363, 257—-265.

Ho, J.C., & Wong, J.S. (1995). Makespan minimization for m parallel identical processors,
Naval Research Logistics 42 935-948.

Hwang, H.-C., & Chang, S. Y. (1998). Parallel machines scheduling with machine
shutdowns. Computers and Mathematics with Applications, 36, 21-31.

Hwang, H.-C., Lee, K., & Chang, S. Y. (2005). The effect of machine availability on the worst-
case performance of LPT. Discrete Applied Mathematics, 148, 49-61.

Johnson, S.M. (1954), Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics, 1: 61-68

Karabulut, K. (2016). A hybrid iterated greedy algorithm for total tardiness minimization in
permutation flowshops. Computers and Industrial Engineering, 98 , 300-307.

Kellerer, H. (1998). Algorithms for multiprocessor scheduling with machine release times. IIE
Transactions, 30, 991-999

Kim, Y.-D. , 1993. Heuristics for flowshop scheduling problems minimizing mean tardiness.
Journal of the Operational Research Society. 44 (1), 19-28 .

Kubiak, W., Btazewicz, J., Formanowicz, P., Breit, J., & Schmidt, G. (2002). Two-machine
flow shops with limited machine availability. European Journal of Operational Research, 136,
528-540.

Kubzin, M. A., Potts, C. N., & Strusevich, V. A. (2009). Approximation results for flow shop
scheduling problems with machine availability constraints. Computers & Operations
Research, 36, 379-390.

Lee, C. Y. (1991). Parallel machine scheduling with non-simultaneous machine available
time. Discrete Applied Mathematics, 30, 53—-61.

Lee, C. Y. (1996). Machine scheduling with an availability constraints. Journal of Global
Optimization, 9, 363—-382.

Lee, C. Y. (1997). Minimizing the makespan in the two-machine flowshop scheduling
problem with an availability constraint. Operations Research Letters, 20, 129-139.

Lee, C. Y. (1999). Two-machine flowshop scheduling with availability constraints. European
Journal of Operational Research, 114, 420-429.

Lee, C. Y., & Liman, S. D. (1992). Single machine flow-time scheduling with scheduled
maintenance. Acta Informatica, 29, 375-382.

45

Lee, C. Y., & Liman, S. D. (1993). Capacitated two-parallel machines scheduling to minimize
sum of job completion times. Discrete Applied Mathematics, 41, 211-222.

Liao, C.-J., Shyur, D.-L., & Lin, C.-H. (2005). Makespan minimization for two parallel
machines with an availability constraint. European Journal of Operational Research, 160,
445-456.

Lin, G., He, Y., Yao, Y., & Lu, H. (1997). Exact bounds of the modified LPT algorithm
applying to parallel machines scheduling with nonsimultaneous machine available times.
Applied Mathematics: A Journal of Chinese Universities, 12, 109-116.

Lin, C.-H., & Liao, C.-J. (2007). Makespan minimization for two parallel machines with an
unavailable period on each machine. The International Journal of Advanced Manufacturing
Technology, 33, 1024-1030.

Lu, L., & Posner, M. E. (1993). An NP-hard open shop scheduling problem with polynomial
average time complexity. Mathematical Methods of Operations Research, 18, 12—-38.

Ma, Y., Chu, C., & Zuo, C. (2010). A survey of scheduling with deterministic machine
availability constraints. Computers and Industrial Engineering, 58(2), 199-211

Nawaz, J., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for three-machine, n-job
sequencing problem. Omega, 11, 91-95.

Ng, C. T., & Kovalyov, M. Y. (2004). An FPTAS for scheduling a two-machine flowshop with
one unavailability interval. Naval Research Logistics, 51, 307-315.

Pan, J. C.-H., Chen, J.-S., & Chao, C.-M. (2002). Minimizing tardiness in a two-machine flow-
shop.Computers & Operations Research, 29(7), 869-885

Panwalkar, S., Smith, M. & Seidmann, A. (1982). Common due date assignment to minimize
total penalty for the one machine scheduling problem. Operations Research 30(2), 391-399

Pinedo, M. (2012). Scheduling: Theory, Algorithms and Systems. 4. ed. New York: Springer

Raman, N. (1995) Minimum tardiness scheduling in flow shops: Construction and evaluation
of alternative solution approaches. Journal of Operations Management 12(2), 131-151

Rodammer, F.A. & White, Jr. K.P. (1988) A Recent Survey Of Production Scheduling. IEEE
Transaction on Systems, Man and Cybernetics. 18(6), 841-851

Sadfi, C., Penz, B., Rapine, C., Blazewicz, J., & Formanowicz, P. (2005). An improved
approximation algorithm for the single machine total completion time scheduling problem with
availability constraints. European Journal of Operational Research, 161, 3-10.

Schmidt, G. (2000). Scheduling with limited machine availability. European Journal of
Operational Research, 121, 1-15

Sen, T., & Gupta, S.K. , 1984. A state-of-art survey of static scheduling research involving
due dates. Omega 12 (1), 63-76 .Wang, G., & Cheng, T. C. E. (2007a). An approximation
scheme for two-machine flowshop scheduling with setup times and an availability constraint.
Computers & Operations Research, 34, 2894—-2901.

46

Vallada, E. , & Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum
tardiness permutation flowshop problem. OMEGA, The International Journal of Management
Science, 38 (1-2), 57-67 .

Vallada, E. , Ruiz, R. , & Minella, G. (2008). Minimising total tardiness in the m-machine
flowshop problem: A review and evaluation of heuristics and metaheuristics. Computers &
Operations Research, 35 (4), 1350-1373 .

Wang, G., & Cheng, T. C. E. (2007b). Heuristics for two-machine flowshop scheduling with
setup times and an availability constraint. Computers & Operations Research, 34, 152-162.

Wilson, J.M.: Alternative formulations of a flow-shop Scheduling problem. Journal of the
Operational Research Society, 40(4), 395-399 (1989)

Xu, Z. , Xu, D., He, J., Wang, Q., Liu, A., Xiao, J. (2018). Mixed Integer Programming
Formulations for Two-Machine Flow Shop Scheduling with an Availability Constraint. Arabian
Journal for Science and Engineering, 43(2), 777-788.

47

Apéndice A — Modelagem do Problema em Python com o
solver Gurobi.

import gurobipy as gp

from gurobipy import GRB

import pandas as pd

import time

def otimiza_gurobi(jobs,p,d,s1,s2,Major):
Create Model
m = gp.Model("testel")

m.Params.TIME_LIMIT = 1800 # Limita o tempo de execucédo para 30 minutos

CREATE VARIABLES
X=]
foriin jobs:
Xi=1]
for jin jobs:
Xij = m.addVar(vtype=GRB.BINARY, name="x"+str(i)+ "," +str(j))

Xi.append(Xij)

X.append(Xi)

S={
forrin[1,2]:
Sr=1]
for jin jobs:
Srj = m.addVar(vtype=GRB.CONTINUOUS, name="S"+str(r)+ "," +str(j))

Sr.append(Srj)

S[r] = Sr

m.update()

T=1]

for jin jobs:

Tj = m.addVar(vtype=GRB.CONTINUOUS, name="T"+str(j))

T.append(T)j)

m.update()

CREATE CONSTRAINTS

Funcao Objetivo (01)
obj=0
forTjinT:

obj = obj + Tj

m.setObjective(obj, GRB.MINIMIZE)

#Constraint (02)
foriin jobs:
left =0
for jin jobs:
left = left + X[i][j]

m.addConstr(left == 1, ("c02-" + str(i)))

#Constraint (03)
for jin jobs:

left=0

48

49

foriin jobs:
left = left + X[i][j]

m.addConstr(left == 1, ("c03-" + str(j)))

#Constraint (04)
for jin jobs:

m.addConstr(S[1][j] - s1 <= Major - (Major * X[-2][j]), ("c04-" + str(j)))

#Constraint (05)
for jin jobs:

m.addConstr(S[1][j] - s1 >= - Major + (Major * X[-2][j]), ("c05-" + str(})))

#Constraint (04b)
for jin jobs:

m.addConstr(S[2][j] - s2 <= Major - (Major * X[-1][j]), ("c04b-" + str(j)))

#Constraint (05b)
for jin jobs:

m.addConstr(S[2][j] - s2 >= - Major + (Major * X[-1][j]), ("c05b-" + str(j)))

#Constraint (06)
forrin[1,2]:
forjin jobs[:-1] :
right = S[r][j]
foriin jobs:

right = right + p[r][i] * X[i][j]

m.addConstr(S[r][j+1] >= right, ("c06-" +str(r)+ "," +str(j)))

#Constraint (07)

for jin jobs:
right = S[1][j]
foriin jobs:

right = right + p[1][i] * X[i][j]

m.addConstr(S[2][j] >= right, ("cO7-" + str(j)))

#Constraint (08)

m.addConstr(S[1][1] >= 0, (“c08"))

#Constraint (09)

for jin jobs:

right = S[2][j]

foriin jobs:

right = right + p[2][i] * X[il[i] - d[i] * X[i[]

m.addConstr(T[j] >= right, ("c09-" + str(j)))

#Constraint (10)

for jin jobs:

m.addConstr(T[j] >= 0, ("c10-" + str(j)))

m.update()

OPTIMIZE

t0 = time.time()

m.optimize()

tl = time.time()

time_execution = t1-t0

#print(round(m.objVal))

return round(m.objVal), time_execution

51

52

Apéndice B — Codigo das Heuristicas EDD, NEH-T e NEH-H

import math

import numpy as np

from time import process_time
from time import process_time_ns
import time

import random

#Obs: Nessa implementagéo a M1 é representada pelo indice 0. Nas insts 1 a 3 estava pelo
indice 1.

class Job:
def __init_ (self,i,p,d):
self.i=i # nimero do job
self.p=p # Lista dos tempos de processamento
self.d=d # Due date
self.S=[0,0] # lista dos instantes de inicio em cada maquina
self.C=[0,0] # lista dos instantes de conclusdo em cada maquina

self. T= 0 # Atraso do job

def calculaJob (job, S, C):
job.S=S
job.C=C

job.T = max(job.C[1] - job.d, 0)

def calculaCmax (lista_jobs, s1=0, t1=0, s2=0, t2=0):
m=2
n = len(lista_jobs)

s=[[0 for i in range(m)] for j in range(n)]

c=[[O for i in range(m)] for j in range(n)]

p=[job.p for job in lista_jobs]

indispl = False # Indica se o periodo de indisponibilidade ja ocorreu na M1

indisp2 = False # Indica se o periodo de indisponibilidade j& ocorreu na M2

Primeiro Job
Primeira Maquina
if p[0][0] <= s1:
s[0][0] = 0
c[0][0]=p[0][0]
else:
indispl = True
s[o][0] = t1

c[0][0]= s[O][0] + p[0][O]

Proxima Maguina
if c[0][0] + p[O][1] <= s2:
s[O][1] = c[0][0]
c[O][1] = s[O][1] + p[O][1]
else:
indisp2 = True
s[0][1] = max(c[0][0],t2)

c[O][1]= s[O][1] + p[O][1]

Proximos Jobs
#Primeira Maquina
for j in range(1,n):

if (c[j-1][0] + p[j][0] <= s1) or indisp1l:

s[il[0] = c[i-1][0]

c[j][0] = s[i][O] + p(l[O]
else:

indispl = True

s[i][0] = max(c[j-1][0],t1)

c[i][0] = s[i][O] + p[il[O]

#Proxima Maquina

possible_start_ m2 = max(c[j-1][1], c[j][0]) # max(previous job finished on M2, this job
finished on M1)

if (possible_start_m2 + p[j][1] <= s2) or indisp2:
s[j][1] = possible_start_m2

clil[1] = sfl[1] + pll[1]

else:
indisp2 = True
s[j][1] = max(possible_start_m2, t2)

cl[1] = sOlf1] + pllr1]

#print(s)
#print(c)

#print(p)

total_tardiness =0
for job_i in range(len(lista_jobs)):
calculaJob(lista_jobs[job_i], [s[job_i][0], s[job_i][1]], [c[job_i][0], c[job_i][1]])

total_tardiness += lista_jobs[job_i].T

Cmax = lista_jobs[-1].C[1]

54

55

return Cmax, total_tardiness

def limite_inferior_atraso(job):

return job.d - job.p[0] - job.p[1]

def ordena_jobs(lista_jobs):
lista_jobs.sort(key = limite_inferior_atraso)

return lista_jobs

def NEH(lista_jobs, s1=0, t1=0, s2=0, t2=0, criterio_insercao = 'T'):

m=2

n = len(lista_jobs)

bestSeq =]

jobs_ordenados = lista_jobs.copy()

jobs_ordenados = ordena_jobs(jobs_ordenados) # Ordena lista por limite inferior de
atraso

Adicionar primeiro job

bestSeq.append(jobs_ordenados.pop(0))

Adicionar proximos jobs

while len(jobs_ordenados) > 0:

job_a_adicionar = jobs_ordenados.pop(0)

lista_testes = bestSeq.copy()

melhorCmax = float('inf')

melhorT = float('inf')

for i in range(len(bestSeq) + 1):

lista_testes.insert(i, job_a_adicionar)

Cmax, T = calculaCmax(lista_testes, s1, t1, s2, t2)

if criterio_insercao == 'T-Cmax"
if T <melhorT:
index_melhor =i
melhorT =T

melhorCmax = Cmax

elif (T == melhorT) and (Cmax < melhorCmax):

index_melhor =i
melhorT =T

melhorCmax = Cmax

else: # Critério T

if T < melhorT;

index_melhor =i

melhorT =T

lista_testes.pop(i)

56

57

bestSegq.insert(index_melhor, job_a_adicionar) # Adiciona o job ha melhor posi¢éo (em
empate, ele fica na posicdo mais no comeco da seq)

Cmax, T = calculaCmax(bestSeq, s1, t1, s2, t2)

#print(T)

return [bestSeq, melhorT]

def csv_NEH(file_name, criterio_insercao = 'T"):

df = pd.read_csv(file_name, sep ="', header = 0)
sl = df.iloc[df.index[-1]]['num_job']

t1 = df.iloc[df.index[-1]]['p1']

s2 = df.iloc[df.index[-1]]['p2']

t2 = df.iloc[df.index[-1]]['d]

df_jobs = dff:-2]

lista_jobs =]
for index, row in df_jobs.iterrows():
lista_jobs.append(Job(i= row.num_job,
p= [row.p1, row.p2],

d=row.d))

del df

del df_jobs

#t0 = time.time() # Tempo real, ndo consegui com o tempo de execugao

t0 = time.process_time()

lista_resultados = NEH(lista_jobs, s1, t1, s2, t2, criterio_insercao)

#t1 = time.time()

tl = time.process_time()

time_execution = t1-t0

bestSeq = lista_resultados[0]

melhorT = lista_resultados|1]

return bestSeq, melhorT, time_execution

def ordena_jobs_EDD(lista_jobs):
lista_jobs.sort(key = lambda job: job.d)

return lista_jobs

def csv_EDD(file_name):

df = pd.read_csv(file_name, sep ="}, header = 0)
sl = df.iloc[df.index[-1]]['num_job']
t1 = df.iloc[df.index[-1]]['p1']

s2 = df.iloc[df.index[-1]]['p2']

58

t2 = df.iloc[df.index[-1]]['d]

df_jobs = df[:-2]

lista_jobs =]

for index, row in df_jobs.iterrows():

lista_jobs.append(Job(i= row.num_job,

p= [row.p1, row.p2],

d=row.d))

del df

del df_jobs

t0 = time.process_time()

lista_resultados = ordena_jobs_EDD(lista_jobs)

tl = time.process_time()

time_execution = t1-t0

Cmax, T = calculaCmax(lista_resultados, s1, t1, s2, t2)

bestSeq = lista_resultados

melhorT =T

return bestSeq, melhorT, time_execution

59

