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If you wait for luck to turn up, 

 life becomes very boring. 

(Mikhail Tal) 

  



RESUMO 

 

Este trabalho teve como objeto de estudo o problema de minimização do 

atraso total em um flow shop permutacional de duas máquinas com uma 

janela de indisponibilidade non-resumable (que não permite um job ser 

interrompido pela indisponibilidade e retomado depois) em cada uma das 

máquinas, inédito na literatura. Foi criada uma formulação de Programação 

Linear Inteira Mista desse problema e uma implementação com o solver 

Gurobi para resolver o problema de maneira ótima. 

Como o problema estudado neste trabalho é NP-Difícil, foram também 

propostos métodos heurísticos, sendo duas heurísticas construtivas baseadas 

no algoritmo NEH e uma regra de despacho EDD (Earliest Due Date). Esse 

uso de heurísticas é importante para problemas NP-Difíceis porque em geral 

instâncias grandes desses problemas não podem ser resolvidos por métodos 

exatos em um tempo razoável para a aplicação.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LISTA DE FIGURAS 

 

Figura 1: Exemplo de schedule de máquina única com 3 jobs. ............................................ 13 

Figura 2: Exemplo de schedule de máquinas paralelas com 3 máquinas e 9 jobs. .............. 14 

Figura 3: Exemplo de schedule flow shop com 3 máquinas e 3 jobs. ................................... 14 

Figura 4: Exemplo de job shop com 3 máquinas e 2 jobs. Observa-se que os jobs tem 

roteiros diferentes: J1 segue M1 -> M2 -> M3 enquanto J2 segue M2 -> M1 -> M3. ............ 15 

Figura 5: Exemplo de open shop com 3 máquinas e 2 jobs. Considerando os mesmos jobs e 

máquinas apresentados na figura 4 (job shop), aqui o planejador tem a liberdade de alterar o 

roteiro dos jobs. No caso, o roteiro do J1 foi alterado para M1 -> M3 -> M2. ....................... 15 

Figura 6: Representação dos diferentes tipos de indisponibilidade para um schedule de um 

workshop de uma máquina e um job (com tempo de processamento fixo) com diferentes 

tipos de restrição de disponibilidade: a) resumable, b) non-resumable e c) semiresumable. A 

cor preta representa período de indisponibilidade. ............................................................... 17 

Figura 7: Gráfico de Gantt da solução da instância exemplo 1. A cor preta representa 

período de indisponibilidade. ............................................................................................... 29 

Figura 8: Gráfico de Gantt da solução da instância exemplo 2. A cor preta representa 

período de indisponibilidade. ............................................................................................... 29 

Figura 9: Gráfico de Gantt da solução da instância exemplo 3. A cor preta representa 

período de indisponibilidade. ............................................................................................... 29 

Figura 10: Representação em gráfico de Gantt de cada uma das três possíveis inserções do 

job 𝐽3: a) na primeira posição, b) na segunda posição e c) na terceira posição. .................. 32 

Figura 11: Representação dos cenários considerados para a geração das datas de entrega. 

P é o limitante inferior do makespan. ................................................................................... 40 

 

 



LISTA DE TABELAS 

Tabela 1: Tabela dos jobs da instância exemplo, com seus tempos de processamento e data 

de entrega. .......................................................................................................................... 28 

Tabela 2: Jobs da instância exemplo ordenados em ordem não decrescente pelo Limite 

Inferior do Atraso ................................................................................................................. 31 

Tabela 3: Resultados da análise geral com o método exato ................................................ 34 

Tabela 4: Resultados da análise geral com os métodos heurísticos em comparação com o 

método exato. ...................................................................................................................... 36 

Tabela 5: Comparação dos tempos de execução do método exato e dos métodos 

heurísticos. .......................................................................................................................... 37 

Tabela 6: Resultados da análise de sensibilidade, considerando o Gap (em unidades de 

tempo)  médio entre a solução ótima e a solução da heurística NEH-H. .............................. 40 

Tabela 7: Resultados da análise de sensibilidade, considerando o Gap (em porcentagem) 

médio entre a solução ótima e a solução da heurística NEH-H. ........................................... 40 

 

 

 

  



SUMÁRIO 

 

 
1 Introdução ................................................................................................................... 11 

1.1 Contexto ................................................................................................................ 11 

1.2 Objetivo ................................................................................................................. 12 

2 Revisão da Literatura e Descrição do Problema ...................................................... 13 

2.1 Programação da Produção (Scheduling) ............................................................... 13 

2.2 Problemas com Restrição de Disponibilidade ........................................................ 16 

2.3 Flow Shop ............................................................................................................. 19 

2.3.1 Flow Shop com Restrição de Disponibilidade ...................................................... 19 

2.3.2 Flow Shop com Restrição de Disponibilidade e Função Objetivo de Atraso ......... 21 

3 Formulação Matemática ............................................................................................. 23 

3.1 Formulação do problema F2, ℎ11|𝑛𝑟 − 𝑎|𝑇𝑗 ........................................................... 23 

3.2 Formulação do problema F2, ℎ21|𝑛𝑟 − 𝑎|𝑇𝑗 ........................................................... 25 

3.3 Formulação do problema F2, ℎ𝑗1|𝑛𝑟 − 𝑎|𝑇𝑗 ............................................................ 26 

3.4 Instâncias exemplo ................................................................................................ 28 

4 Proposta de Heurísticas Eficientes ........................................................................... 30 

4.1 Heurística EDD (Earliest Due Date) ....................................................................... 30 

4.2 Heurística NEH ...................................................................................................... 30 

5 Experimentos Computacionais ................................................................................. 33 

5.1 Instâncias .............................................................................................................. 33 

5.2 Análise Geral ......................................................................................................... 34 

5.3 Análise de Sensibilidade ........................................................................................ 39 

6 Conclusão ................................................................................................................... 42 

7 Referências Bibliográficas ......................................................................................... 43 

Apêndice A – Modelagem do Problema em Python com o solver Gurobi. .................... 47 

Apêndice B – Código das Heurísticas EDD, NEH-T e NEH-H.......................................... 52 

 

 

 

 



 



11 
 

1 Introdução 

1.1 Contexto 

O problema de Programação da Produção (Scheduling) tem papel 

importante na tomada de decisões relacionadas a alocação de recursos, 

sendo muito aplicado em sistemas produtivos, de manufatura e de 

processamento computacional (Pinedo 2012).  

Melhores programas de produção (schedules) trazem uma vantagem 

competitiva para a empresa através de ganhos em produtividade dos recursos 

e outras eficiências relacionadas à gestão de operações, o que motiva a 

busca por abordagens mais eficazes de Programação da Produção  

(Rodammer e White Jr 1988). 

Os problemas de Programação da Produção costumam ser categorizados 

pela configuração dos recursos no sistema produtivo (explicado na Seção 2.1 

em mais detalhe). Este trabalho explora um problema na configuração de flow 

shop, layout muito comum na manufatura, em que m máquinas estão 

alocadas em série para o processamento das atividades (jobs) e todos os jobs 

devem seguir a mesma sequência de máquinas (Pinedo 2012). 

Outro fator que define um problema de programação da produção é o 

critério de otimização. O problema estudado neste trabalho busca minimizar o 

atraso total, que é um objetivo muito importante para sistemas de manufatura 

(Raman, 1995), já que datas de entrega são muito comuns nesses sistemas 

(Panwalkar, Smith e Seidmann, 1982) e atraso podem levar a insatisfação dos 

clientes e aumento dos custos (Sen e Gupta, 1984). 

Além da configuração dos recursos e do critério de otimização, um 

problema de Programação também é definido por restrições adicionais 

específicas do problema. Neste trabalho é assumida uma restrição FIFO (First 

In First Out) para o problema, uma restrição que é amplamente usada para 

problemas de Flow Shop e que é condizente com práticas comuns da 

indústria de manufatura. A restrição FIFO implica que os jobs seguem a 

mesma ordem de processamento em todas as máquinas, e portanto apenas 

uma sequência permutacional dos jobs já representa toda a sequência de 

produção em todas as máquinas. Um flow shop com a restrição FIFO é 

chamado de flow shop permutacional. 

Por fim, uma última restrição adotada no problema estudado neste 

trabalho é a existência de janelas de indisponibilidade. A maior parte da 

literatura de Programação da Produção parte da hipótese de que os recursos 

estão disponíveis durante todo o horizonte de tempo considerado, porém 

muitas vezes essa hipótese não é condiz com o cenário real de produção 

industrial. Segundo Ma, Chu e Zuo (2010) alguns cenários em que as 
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máquinas não estão disponíveis durante todo o período são por quebra de 

uma máquina, manutenção preventiva e também quando uma máquina está 

indisponível no início do período por ainda ter tarefas de um período anterior 

para finalizar. Neste trabalho, considera-se um flow shop com até um período 

de indisponibilidade em cada uma das máquinas. 

Em problemas de Programação da Produção com janelas de 

indisponibilidade, pode-se considerar que uma tarefa pode começar a ser 

processada por uma máquina antes de seu período de indisponibilidade e ter 

seu processamento retomado pela máquina assim que a indisponibilidade 

termina, ou pode-se considerar que uma tarefa não pode ser interrompida por 

uma janela de indisponibilidade da máquina em que está sendo processada. 

Ambos os casos tem aplicação na indústria, dependendo do contexto 

específico de produção. Neste trabalho considera-se o segundo caso, que na 

literatura é conhecido como non-resumable. 

 

1.2 Objetivo 

O objetivo deste trabalho é estudar o problema de minimização do atraso 

total em um flow shop permutacional de duas máquinas com uma janela de 

indisponibilidade non-resumable em cada uma das máquinas. Com este 

enfoque será apresentada uma formulação de Programação Linear Inteira 

Mista desse problema, além disso três métodos heurísticos adaptados de 

métodos conhecidos da literatura serão propostos. 

Como o problema estudado neste trabalho é NP-Difícil, é de grande 

importância estudar o resultado de métodos heurísticos, pois em muitas 

situações a resolução de instâncias grandes por métodos exatos é inviável 

em um tempo razoável para a aplicação. Sabe-se que o problema tratado 

neste trabalho é NP-Difícil dado que Du e Leung (1990) provaram que o 

problema de minimização do atraso em uma única máquina é NP-Difícil, e o 

problema do flow shop com janelas de indisponibilidade é uma generalização 

do problema em máquina única sem restrições de disponibilidade. 
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2 Revisão da Literatura e Descrição do Problema 
 

Neste capítulo é feita uma revisão da literatura com uma visão geral de 

Programação da Produção, em seguida mais especificamente sobre problemas 

de flow shop com restrições de disponibilidade e problemas de flow shop com 

objetivo de minimizar o atraso. 

2.1 Programação da Produção (Scheduling) 
 

Pinedo (2012) define a Programação da Produção, ou Scheduling, como o 

exercício de alocar recursos para a realização de tarefas durante determinados 

períodos de tempo, otimizando um ou mais critérios. Os recursos a serem 

alocados e as tarefas a serem realizadas podem ser diversos, como máquinas 

em uma oficina para realizarem processos produtivos, pistas de um aeroporto a 

serem alocadas para pousos e decolagens ou ainda unidades de processamento 

de um computador para executarem programas de um computador. (Pinedo 

2012). Esses recursos a serem alocados são normalmente chamados de 

‘máquinas’ e as tarefas a serem realizadas de ‘jobs’ (sendo que um job pode 

requerer uma ou mais operações a serem realizadas pelas máquinas). 

Os problemas de Programação da Produção podem ser categorizados 

através de diversos critérios. O principal critério para uma categorização mais 

geral desses problemas é a presença de elementos aleatórios: problemas que 

não possuem elementos aleatórios são chamados determinísticos, enquanto os 

que possuem elementos aleatórios são chamados estocásticos. 

Outro critério importante para categorizar os problemas de Programação da 

Produção é a configuração das máquinas. As principais configurações de 

máquinas são: máquina única, máquinas em paralelo, flow shop, job shop, e 

open shop, que são explicadas a seguir (Pinedo 2012): 

Máquina única: O caso da máquina única é o mais simples dentre as 

configurações de máquinas, sendo um caso específico de todas as outras 

configurações de máquinas mais complexas. Um exemplo é apresentado na 

Figura 1. 

 

 

Figura 1: Exemplo de schedule de máquina única com 3 jobs. 

M1 J2
t

J1 J3
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Máquinas em paralelo: Há m máquinas em paralelo. Cada job requer uma 

única operação a ser realizada por alguma das m máquinas (ou por um 

subconjunto dessas máquinas). Problemas nessa configuração de máquinas 

costumam ser categorizados ainda pela relação entre a velocidade de 

processamento de cada uma das máquinas paralelas, podendo ser máquinas 

idênticas, com velocidades idênticas (ou seja, seguem uma proporção no tempo 

de processamento que independe do job específico a ser processado), ou não 

relacionadas. Um exemplo é apresentado na Figura 2. 

 

 

Figura 2: Exemplo de schedule de máquinas paralelas com 3 máquinas e 9 jobs. 

Flow shop: Há m máquinas em série. Cada job tem que ser processado em 

cada uma das m máquinas. Além disso, todos os jobs devem seguir o mesmo 

roteiro (ou seja, ser processado primeiro na máquina 1, depois na máquina 2, e 

assim por diante até a máquina m). Após concluir seu processamento em uma 

máquina, o job entra em uma fila para ser processado pela máquina seguinte. 

Problemas de flow shop normalmente possuem uma restrição ‘Primeiro a Entrar, 

Primeiro a Sair’ (PEPS, ou FIFO de ‘First In, First Out’), que proíbe um job de 

passar na frente de outro na fila. Um flow Shop que possuí a restrição FIFO é 

chamado flow shop permutacional. Um exemplo é apresentado na Figura 3. 

 

 

Figura 3: Exemplo de schedule flow shop com 3 máquinas e 3 jobs. 

 

Job shop: Há m máquinas. Cada job tem o seu próprio roteiro determinado 

para seguir, devendo passar em ordem por uma determinada sequência de 

M1 J5

M2

M3 J8
t

J1 J6

J2 J7

J3 J4 J9

M1 J2

M2 J3

M3
t

J3

J1 J3

J1 J2

J1 J2
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máquinas. Dessa forma, o job shop é uma generalização do flow shop. Um 

exemplo é apresentado na Figura 4. 

 

 

Figura 4: Exemplo de job shop com 3 máquinas e 2 jobs. Observa-se que os jobs tem roteiros 

diferentes: J1 segue M1 -> M2 -> M3 enquanto J2 segue M2 -> M1 -> M3. 

Open shop: Há m máquinas. Cada job deve ser processado por um sub-

conjunto de máquinas, porém o roteiro que deve seguir não é predeterminado e é 

uma decisão a ser tomada durante a programação da produção. Um exemplo é 

apresentado na Figura 5. 

 

 

Figura 5: Exemplo de open shop com 3 máquinas e 2 jobs. Considerando os mesmos jobs e 

máquinas apresentados na figura 4 (job shop), aqui o planejador tem a liberdade de alterar o 

roteiro dos jobs. No caso, o roteiro do J1 foi alterado para M1 -> M3 -> M2. 

Dentre os trabalhos pioneiros de Programação da Produção, um destaque é o 

de Johnson (1954), que estuda o problema de minimização do makespan 

(instante de conclusão do último job processado) em flow shops de 2 ou 3 

máquinas. Nesse trabalho ele apresenta uma regra simples que minimiza o 

makespan encontrando a solução ótima e que ficou conhecida como Algoritmo 

de Johnson. 

Seguindo a notação do Pinedo (2012), um problema de programação da 

produção pode ser descrito por um trio de hiperparâmetros α|β|γ. α descreve a 

configuração das máquinas e usualmente tem só um elemento. β descreve 

M1

M2

M3 J1
t

J1 J2

J2 J1

J2

M1

M2

M3 J1
t

J1 J2

J2 J1

J2
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características e restrições adicionais do processamento e pode ter nenhum, um, 

ou vários elementos. γ descreve o objetivo a ser minimizado e usualmente só tem 

um elemento. Tomando como exemplo o problema 𝑃3|𝑝𝑟𝑒𝑐|𝐶𝑚𝑎𝑥 , 𝑃3 indica 

que trata-se de um problema de máquinas paralelas com 3 máquinas,  𝑝𝑟𝑒𝑐 

indica que o problema inclui restrições de precedência (alguns jobs tem a 

restrição de ser feito depois de algum outro job) e  𝐶𝑚𝑎𝑥 indica que o objetivo a 

ser minimizado é o makespan (maior tempo de conclusão de job). 

2.2 Problemas com Restrição de Disponibilidade 
 

Na literatura de Scheduling (Programação da Produção), é usual assumir a 

hipótese de que todas as máquinas estão disponíveis durante todo o horizonte 

de planejamento. Entretanto, em uma grande variedade de situações reais essa 

hipótese não é de fato verdadeira. Situações comuns em que não há completa 

disponibilidade das máquinas são horizontes com atividade de manutenção 

preventiva de uma ou mais máquinas e horizontes em que há possibilidade de 

quebra de alguma máquina. (Schmidt 2000). 

Nos problemas com Restrição de Disponibilidade, há uma distinção entre 

diferentes tipos de restrição relacionados à possibilidade de um job retomar o seu 

processamento após ser interrompido por um período de indisponibilidade da 

máquina em que começou a ser processado. A definição de indisponibilidade 

resumable e non-resumable é feita por Lee (1996) e a de semiresumable por 

Lee(1999). O caso resumable significa que quando um processamento de um job 

é interrompido por indisponibilidade da máquina, ele pode ser retomado de onde 

parou (sem perda da fração já processada), enquanto o caso non-resumable 

significa que ele não pode ser retomado e deve ser reiniciado do zero. Já o caso 

semiresumable é uma generalização desses, definindo uma variável alfa entre 0 

e 1 indicando a fração que deve ser reprocessada (do processamento 

interrompido por indisponibilidade de máquina), de forma que alfa=0 corresponde 

ao caso resumable e alfa=1 ao caso non-resumable. Um exemplo simples com 

apenas 1 job e comparando esses três casos é apresentado na Figura 6. 
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Figura 6: Representação dos diferentes tipos de indisponibilidade para um schedule de um 

workshop de uma máquina e um job (com tempo de processamento fixo) com diferentes tipos de 

restrição de disponibilidade: a) resumable, b) non-resumable e c) semiresumable. A cor preta 

representa período de indisponibilidade. 

Adiri et al. (1989) estudam o problema de minimização de flowtime (soma dos 

tempos de finalização de todos os jobs) em uma máquina com um período de 

indisponibilidade (non-resumable), lidando tanto com o caso estocástico em que 

o momento de falha da máquina e o tempo de reparo são aleatórios como com o 

caso determinístico em que essas variáveis já são conhecidas antes do 

planejamento.  Os autores mostram que o problema é NP-Difícil e estudam a 

aplicação da heurística SPT (Shortest Processing Time ou Menor Tempo de 

Processamento) nele. Esse problema foi também estudado por Lee e Liman 

(1992), que apresentam uma prova mais simples de que o problema é NP-Difícil 

e revisam a margem de erro relativa da aplicação do SPT. Sadfi et al. (2005) 

propõem um algoritmo MSPT (SPT Modificado) para esse problema, He, Zhong e 

Gu (2006) apresentam um algoritmo PTAS (Polynomial Time Approximation 

Scheme) e Breit (2007) apresenta um algoritmo paramétrico O(nlog n) capaz de 

obter melhores margens de erro de pior caso. 

Lee (1991) estuda o problema de minimização do makespan em um ambiente 

com m máquinas paralelas, em que cada máquina i só se torna disponível em um 

instante ai arbitrário. Ele desenvolve uma heurística MLPT (Modified Longest 

Processing Time ou Maior Tempo de Processamento Modificado) para lidar com 

o problema. Lin, He, Yao e Lu (1997) estudam as margens de erro do algoritmo 

MLPT proposto por Lee (1991) e propõem mais duas variações de heurísticas 

MLPT. Esse problema é também estudado por Kellerer (1998), que desenvolve 

uma heurística de aproximação dual para o problema, e também estuda o 

mesmo problema com o tempo de conclusão mínimo Cmin (instante em que 

alguma das máquinas acaba de processar todos os jobs a ela assignados) como 

função objetivo a ser maximizada. Chang e Hwang (1999) também estudam esse 

problema, aplicando a heurística MULTIFIT para resolvê-lo. Lu e Posner (1993) 

estudam o problema de minimização do makespan em um Open Shop de 2 

máquinas com a restrição de que uma das máquinas só torna-se disponível em 

um instante t e propõem um método de resolução em tempo polinomial. 

a) M1
t

b) M1
t

c) M1
t

J1 J1

J1 J1

J1
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Lee e Liman (1993) estudam o problema de minimização do flowtime em um 

ambiente de duas máquinas paralelas, em que uma das máquinas só funciona 

por um determinado tempo e depois se torna indisponível. Eles mostram que o 

problema é NP-Difícil e apresentam um algoritmo de programação dinâmica 

pseudo-polinomial. Mosheiov (1994) estuda um problema similar com m 

máquinas, em que cada máquina tem um horizonte de disponibilidade [xj, yj], e 

demonstra que a heurística SPT é assintoticamente ótima para o problema 

conforme o número de jobs aumenta. 

Lee (1996) além de definir as indisponibilidades resumable e non-resumable 

estuda diversos problemas determinísticos com esses tipos de indisponibilidade 

com as configurações de máquina única e máquinas paralelas e com diferentes 

funções objetivo. Para cada problema ele apresenta um algoritmo ótimo de 

tempo polinomial ou uma prova de que o problema é NP-Difícil. 

Hwang e Chang (1998) e Hwang, Lee e Chang (2005) estudam o problema de 

minimização de makespan em uma configuração de máquinas paralelas em que 

cada máquina pode ter um intervalo de indisponibilidade non-resumable e 

analisam os casos de pior performance do algoritmo LPT (Longest Processing 

Time ou Maior Tempo de Processamento). Eles concluem que o principal fator 

que afeta a performance no pior caso do algoritmo LPT é o número de máquinas 

que podem trabalhar simultaneamente e não o número de máquinas que podem 

ficar indisponíveis. Liao et al. (2005) estudam um caso específico deste 

problema, com duas máquinas em que apenas uma delas possui período de 

indisponibilidade, e apresenta um algoritmo baseado no algoritmo TMO (Two 

Machine Optimization) proposto por Ho e Wong (1995), que resolve o problema 

encontrando o ótimo. Lin e Liao (2007) generalizam o resultado de Liao et al. 

(2005) com a restrição de que ambas as máquinas podem ficar indisponíveis em 

vez de apenas uma, e apresentam um algoritmo baseado em busca lexicográfica 

que resolve o problema encontrando o ótimo. 

Seguindo a notação α|β|γ apresentada no final da Seção 2.1, há alguns 

termos específicos usados para descrever problemas com restrição de 

disponibilidade: Ao hiperparâmetro α, que normalmente possui apenas um 

elemento, acrescenta-se outro elemento hjk descrevendo quantas janelas (índice 

k) há e em quais máquinas (índice j) (Ma, Chu, Zuo 2010). No hiperparâmetro β 

inclui-se um termo indicando o tipo de indisponibilidade entre r – a, nr – a e sr – 

a, que representam respectivamente janelas resumable, non-resumable e 

semiresumable. O termo a na expressão é abreviação de availability constraint 

(restrição de disponibilidade). 
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2.3 Flow Shop 
 

 Em vários ambientes de manufatura e montagem, cada job deve passar por 

uma série de operações. Frequentemente, essas operações dever ser feitas em 

todos os jobs na mesma ordem, implicando que todos os jobs devem seguir o 

mesmo roteiro. Então, assume-se que as máquinas são organizadas em série e 

o ambiente de produção é chamado de flow shop. (Pinedo 2012) 

O artigo de Johnson (1954) apresentado na seção anterior, como um dos 

pioneiros na área de pesquisa de Programação da Produção também foi um dos 

pioneiros no estudo de flow shop. 

2.3.1 Flow Shop com Restrição de Disponibilidade 
 

Em relação a problemas de flow shop com restrições de disponibilidade, a 

survey Ma, Chu, Zuo (2010) afirmam que há muitos estudos para casos com 

duas máquinas, porém poucos para casos com múltiplas máquinas. Além disso, 

indicam que quase toda pesquisa na área tem como critério de otimização o 

makespan, e que o estudo do problema com diferentes critérios de otimização é 

uma direção interessante para futura pesquisa. Lee (1997) é pioneiro nessa área, 

estudando o problema de flow shop de duas máquinas com indisponibilidade 

(resumable) em uma das máquinas e buscando minimizar o makespan. Ele 

afirma que o problema é NP-Difícil para duas máquinas se alguma tiver um 

‘buraco’ de disponibilidade, enquanto que o caso clássico sem restrição de 

disponibilidade pode ser resolvido em tempo polinomial pelo Algoritmo de 

Johnson proposto por Jonhson (1953). 

Considerando o caso de minimização do makespan em um flow shop de duas 

máquinas com restrição de disponibilidade resumable apenas na primeira, Lee 

(1997) mostra que a aplicação do Algoritmo de Johnson tem margem de erro 

relativa menor ou igual a 1. Allaoui et al. (2006) estudaram a aplicação do 

Algoritmo de Johnson a esse problema e estabeleceram as condições nas quais 

esse algoritmo retorna a solução ótima. Lee (1997) também propôs uma 

heurística de tempo O(nlog n) com margem de erro relativa de até 1/2. Cheng e 

Wang (2000) mostraram que essa margem de ½ era justa e propuseram uma 

heurística melhorada, com uma margem de erro de até 1/3 que mais tarde foi 

melhorada para 1/4 por Breit (2004). Ng e Kovalyov (2004) estudam propriedades 

de uma programação ótima para esse problema e propõem um esquema de 

aproximação em tempo totalmente polinomial (FPTAS Fully Polynomial Time 

Approximation Scheme). Mais tarde Wang e Cheng (2007a) e Wang e Cheng 

(2007b) estudam o problema considerando também o tempo de setup e 

desenvolvem um esquema de aproximação em tempo polinomial (PTAS 
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Polynomial Time Approximation Scheme) e uma heurística com margem de erro 

relativo menor ou igual a 2/3 para resolvê-lo.  

Ainda, no caso de duas máquinas com restrição de disponibilidade 

resumable, mas com restrição de disponibilidade apenas na segunda máquina, 

Lee (1997) mostra que a aplicação do Algoritmo de Johnson tem margem de erro 

relativa menor ou igual a 1/2 e propõe uma heurística de tempo O(nlog n) com 

margem de erro menor ou igual a 1/3. Similar ao caso de indisponibilidade na 

primeira máquina, Ng e Kovalyov (2004) também estudam as propriedades de 

uma programação ótima com indisponibilidade na segunda máquina. Wang e 

Cheng (2007b) estudam uma variante desse problema com tempo de setup e 

apresentam heurística com margem de erro relativo menor ou igual a 2/3 para 

resolvê-lo.  

Breit (2006) estuda a variante preemptiva (permite interrupções arbitrárias nos 

processamentos) do problema com duas máquinas com um buraco de 

disponibilidade na primeira ou na segunda máquina, e propõe um PTAS para 

resolvê-lo.  

Para o problema em que cada uma das duas máquinas pode ter um número 

arbitrário de buracos de disponibilidade, Błazewicz et al. (2001) apresentam duas 

heurísticas construtivas e uma heurística de busca local para resolvê-lo. Kubiak 

et al. (2002) consideram os problemas com vários buracos apenas na máquina 1, 

apenas na máquina 2 e em ambas, mostrando que o problema é NP-Difícil no 

forte sentido mesmo que apenas uma das máquinas tenha número arbitrário de 

buracos. Kubzin, Potts e Strusevich (2009) propõem uma heurística para o caso 

em que apenas M1 tem número arbitrário de buracos. 

Lee (1999) estuda o flow shop de duas máquinas com indisponibilidade 

semiresumable abordando também os casos particulares resumable e non-

resumable, apresenta um algoritmo de programação dinâmica pseudo-polinomial 

que resolve o problema encontrando o ótimo e fornece algumas heurísticas com 

análise margem de erro para elas. 

Xu et al. (2018) apresentam diferentes formulações de programação linear 

inteira mista (MILP - Mixed Integer Linear Programming) para o flow shop de 

duas máquinas com uma restrição de disponibilidade em uma das máquinas e 

avaliam o desempenho de cada formulação na resolução de instâncias de 

problemas. Resultados numéricos mostraram que cada formulação podia 

resolver instâncias de até 100 jobs em tempo razoável. 

Aggoune (2004) é pioneiro em estudar o flow shop de m máquinas com 

restrições de disponibilidade, considerando o problema com múltiplas 

indisponibilidades em cada máquina e minimizando o makespan.  Ele mostra que 

o problema é NP-difícil no sentido forte, e por isso propõe uma heurística 

genética e uma de tabu search para resolver o problema. Mais tarde Aggoune e 
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Portmann (2006) apresentam uma abordagem geométrica temporizada 

(temporizer geometric) para resolver o problema com dois jobs e uma heurística 

para conseguir uma solução aproximada para o problema com mais jobs.  

2.3.2 Flow Shop com Restrição de Disponibilidade e Função Objetivo de 

Atraso  
 

O problema de minimização do atraso total em um flow shop é NP-Difícil. 

Chega-se facilmente a essa conclusão a partir do resultado de Du e Leung 

(1990) de que a minimização do atraso total em uma máquina é NP-Difícil, já que 

o problema com uma máquina é um caso específico de flow shop. 

O critério de atraso total é importante para a indústria de manufatura, pois 

quando um job não é completado antes do seu prazo há alguns custos para a 

empresa (Armentano e Ronconi 1999). Segudo Sen e Gupta (1984), esses 

custos podem ser penalidades contratuais, dano à imagem da empresa que 

aumenta a chance de perder o cliente para futuros trabalhos e  dano à reputação 

que diminui a chance de novos clientes buscarem a empresa. 

Kim (1993) revisa a literatura inicial de flow shops minimizando o atraso total, 

apresentado diferentes abordagens heurísticas para resolver o problema. 

Armentano e Ronconi (1999) estudam a aplicação de uma heurística tabu search 

para resolver esse tipo de problema e obtêm resultados promissores em 

experimentos numéricos. Hasija e Rajendran (2004) propõem uma heurística 

baseada em recozimento simulado (simulated annealing) para o problema, com 

resultados bons em experimentos numéricos. Vallada, Ruiz e Minella (2008) 

fazem uma revisão da literatura de heurística para a minimização do atraso total 

no flow shop de m-máquinas. Framinan e Leisten (2008) desenvolvem como 

heurística um algoritmo guloso (greedy), com bons resultados nos experimentos 

numéricos. Vallada e Ruiz (2010) propõem algoritmos genéticos para lidar o 

problema, e esses algoritmos provaram-se eficazes nos resultados dos 

experimentos numéricos. Karabulut (2016) propõe um algoritmo guloso iterado 

para resolver o problema, obtendo resultados superiores a outros algoritmos 

gulosos. 

Fernandez-Viagas, Valente e Framinan (2018) realizam uma abrangente 

avaliação das heurísticas e meta-heurísticas com melhores desempenhos para o 

problema e propõem uma heurística de beam search e um conjunto de 

algoritmos gulosos iterados com 8 diferentes procedimentos para a etapa de 

destruição e construção do algoritmo. Nos experimentos computacionais, a 

heurística beam search se destaca com desempenho superior às demais 

heurísticas construtivas, enquanto o algoritmo guloso iterado com o 

procedimento de troca adjacente aleatória teve o melhor desempenho entre as 

meta-heurísticas analisadas. 
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Ao conhecimento do autor, ainda não foram publicados artigos científicos 

lidando com o flow shop de 2 máquinas com restrição de indisponiblidade tendo 

como função objetivo o atraso total. 

Neste trabalho são formuladas três variantes do problema de minimização do 

atraso em um flow shop  de duas máquinas com restrições de disponibilidade 

non-resumable: a) Com uma janela de indisponibilidade na primeira máquina - 

F2, ℎ11|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗; b) Com uma janela de indisponibilidade na segunda 

máquina - F2, ℎ21|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗; c) Com uma janela de indisponibilidade em 

cada uma das máquinas - F2, ℎ𝑗1|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗. Vale ressaltar que as variantes 

a) e b) são casos específicos da variante c). 

  



23 
 

3 Formulação Matemática 

Nesse capítulo são formuladas utilizando programação linear inteira mista as 

três variantes do problema de minimização do atraso em um flow shop  de duas 

máquinas com restrições de disponibilidade non-resumable apresentadas no final 

da seção 2.32: F2, ℎ11|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗, F2, ℎ21|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗 e          

F2, ℎ𝑗1|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗. 

3.1 Formulação do problema F2, ℎ11|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗 

 

Nessa formulação baseada nas ideias de Wilson (1989) e de Xu et al.(2018), 

o período de indisponibilidade non-resumable é tratado como o job de índice n+1. 

Considere que 𝑠1, 𝑝1,𝑛+1 e 𝑑𝑛+1 são o instante de início da indisponibilidade na 

primeira máquina, a duração dessa indisponibilidade (que é o tempo de 

processamento do job n+1 na máquina 1) e a data de entrega para esse job de 

índice n+1. Esse job terá instante de início em 𝑠1 e de término em 𝑠1  +  𝑝1,𝑛+1. 

Note-se que  𝑝2,𝑛+1 (o tempo de processamento do job n+1 na máquina 2) vale 

0, e que  𝑑𝑛+1 será o término do período de indisponibilidade somado do maior 

tempo de processamento na segunda máquina, ou seja o instante 𝑠1  +

 𝑝1,𝑛+1  +  𝑚𝑎𝑥(𝑝2𝑗). 

Variáveis: 

𝑥𝑖𝑗: Variável binária que tem valor 1 se o job i foi programado como o j-ésimo 

job, e valor 0 caso contrário. 

𝑆𝑟𝑗: Variável que indica o instante em que o j-ésimo job começa a ser 

processado pela máquina r 

𝑇𝑗: Variável que indica qual foi o atraso do j-ésimo job. 

Parâmetros: 

𝑝𝑟𝑖: Tempo de processamento do job i na máquina r. 

𝑑𝑖: Prazo de entrega para o job i. 

𝑠1: Instante em que começa o período de indisponibilidade na máquina 1. 

𝑀: Valor suficientemente grande. 
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min ∑ 𝑇𝑗

𝑛

𝑗=1

 

 (1) 

∑ 𝑥𝑖𝑗

𝑛+1

𝑗=1

 =  1 𝑖 =  1, 2, . . . , 𝑛 + 1 

(2) 

∑ 𝑥𝑖𝑗

𝑛+1

𝑖=1

 =  1 𝑗 =  1, 2, . . . , 𝑛 + 1 

(3) 

𝑆1𝑗  −  𝑠1  ≤  𝑀(1 − 𝑥𝑛+1,𝑗) 𝑗 =  1,2, . . . , 𝑛 + 1 (4) 

𝑆1𝑗  −  𝑠1  ≥ − 𝑀(1 − 𝑥𝑛+1,𝑗) 𝑗 =  1,2, . . . , 𝑛 + 1 (5) 

𝑆𝑟,𝑗+1  ≥ 𝑆𝑟,𝑗 + ∑ 𝑝𝑟𝑖  𝑥𝑖𝑗

𝑛+1

𝑖=1

 𝑗 =  1,2, . . . , 𝑛 ;  𝑟 = 1,2 

(6) 

𝑆2,𝑗  ≥ 𝑆1,𝑗 + ∑ 𝑝1𝑖  𝑥𝑖𝑗

𝑛+1

𝑖=1

 𝑗 =  1,2, . . . , 𝑛 + 1 

(7) 

𝑆11 ≥ 0  (8) 

𝑇𝑗  ≥ 𝑆2𝑗  +  ∑ 𝑥𝑖𝑗

𝑛 + 1

𝑖=1

(𝑝2𝑖  −  𝑑𝑖) 𝑗 =  1,2, . . . , 𝑛 + 1 

(9) 

𝑇𝑗 ≥ 0  𝑗 =  1,2, . . . , 𝑛 + 1 (10) 

𝑥𝑖𝑗 ∈  {0,1} 𝑖, 𝑗 =  1,2, . . . , 𝑛 + 1 (11) 

 

 

A função objetivo (1) define como objetivo minimizar a soma do atraso de cada um 

dos jobs (considerando todas as posições dos jobs e do período de 

indisponibilidade). O conjunto de restrições (2) garante que cada job (incluindo a 

indisponibilidade) tem uma única posição na sequência de produção, enquanto o 

conjunto de restrições (3) garante que cada posição da sequência de produção está 

associada a um único job (ou à indisponibilidade). Os conjuntos de restrições (4) e 

(5) garantem que o período de indisponibilidade se iniciará em 𝑠1. É interessante 

notar que nessas inequações, com o uso do 𝑀 suficientemente grande, essas 

restrições apenas restringem de fato o espaço das soluções quando 𝑥𝑛+1,𝑗 é igual 

1, e nesse caso as restrições (4) e (5) ficam 𝑆1𝑗  −  𝑠1  ≤  0 e 𝑆1𝑗  −  𝑠1  ≥  0 

respectivamente (com as quais chega-se a 𝑆1𝑗 =  𝑠1). 

. A restrição (6) define que o processamento de um job em uma das máquinas só 

pode iniciar após o job anterior acabar de ser processado. A restrição (7) define que 

o processamento de um job na segunda máquina só pode começar após esse job 

acabar de ser processado pela primeira máquina. A restrição (8) define que o 
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primeiro job só pode começar a ser processado na primeira máquina a partir do 

instante 0. A restrição (9) define que o atraso do job na posição j é maior ou igual à 

diferença entre seu instante de conclusão e o seu prazo de entrega, enquanto a 

restrição (10) define que o atraso de cada posição não pode ser negativo. Por fim, a 

restrição (11) define a restrição binária para cada uma das variáveis 𝑥𝑖𝑗. 

3.2 Formulação do problema F2, ℎ21|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗 

 

Também baseada nas ideia de Wilson (1989), e de Xu et al. (2018), a 

formulação com restrição de disponibilidade non-resumable na máquina 2 

também trata o período de indisponibilidade como o job de índice n+1. Porém, 

esse período inicia em 𝑠2 e terminando em 𝑠2  +  𝑝2,𝑛+1 já que a restrição 

passou a ser na máquina 2. A formulação desse problema é muito similar à 

formulação com restrição apenas na máquina 1, com alterações nas restrições 

(4) e (5) referentes ao período de indisponibilidade. Note-se que  𝑝1,𝑛+1 vale 0, e 

que  𝑑𝑛+1 será o término do período de indisponibilidade, ou seja o instante 

𝑠2  +  𝑝2,𝑛+1.  

Variáveis: 

𝑥𝑖𝑗: Variável binária que tem valor 1 se o job i foi programado como o j-ésimo 

job, e valor 0 caso contrário. 

𝑆𝑟𝑗: Variável que indica o instante em que o j-ésimo job começa a ser 

processado pela máquina r 

𝑇𝑗: Variável que indica qual foi o atraso do j-ésimo job. 

Parâmetros: 

𝑝𝑟𝑖: Tempo de processamento do job i na máquina r. 

𝑑𝑖: Prazo de entrega para o job i. 

𝑠2: Instante em que começa o período de indisponibilidade na máquina 2. 

𝑀: Valor suficientemente grande. 

 

min ∑ 𝑇𝑗

𝑛

𝑗=1

 

 (12) 
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∑ 𝑥𝑖𝑗

𝑛+1

𝑗=1

 =  1 𝑖 =  1, 2, . . . , 𝑛 + 1 

(13) 

∑ 𝑥𝑖𝑗

𝑛+1

𝑖=1

 =  1 𝑗 =  1, 2, . . . , 𝑛 + 1 

(14) 

𝑆2𝑗  −  𝑠2  ≤  𝑀(1 −  𝑥𝑛+1,𝑗) 𝑗 =  1,2, . . . , 𝑛 + 1 (15) 

𝑆2𝑗  −  𝑠2  ≥ − 𝑀(1 − 𝑥𝑛+1,𝑗) 𝑗 =  1,2, . . . , 𝑛 + 1 (16) 

𝑆𝑟,𝑗+1  ≥ 𝑆𝑟,𝑗 + ∑ 𝑝𝑟𝑖  𝑥𝑖𝑗

𝑛+1

𝑖=1

 𝑗 =  1,2, . . . , 𝑛 ;  𝑟 = 1,2 

(17) 

𝑆2,𝑗  ≥ 𝑆1,𝑗 + ∑ 𝑝1𝑖  𝑥𝑖𝑗

𝑛+1

𝑖=1

 𝑗 =  1,2, . . . , 𝑛 + 1 

(18) 

𝑆11 ≥ 0  (19) 

𝑇𝑗  ≥ 𝑆2𝑗  +  ∑ 𝑥𝑖𝑗

𝑛 + 1

𝑖=1

(𝑝2𝑖  −  𝑑𝑖) 𝑗 =  1,2, . . . , 𝑛 + 1 

(20) 

𝑇𝑗 ≥ 0  𝑗 =  1,2, . . . , 𝑛 + 1 (21) 

𝑥𝑖𝑗 ∈  {0,1} 𝑖, 𝑗 =  1,2, . . . , 𝑛 + 1 (22) 

 

A função objetivo (12) é a mesma que a (1). Os conjuntos de restrições (13), (14), 

(17), (18), (19), (20), (21) e (22) são os mesmas que os (2), (3), (6), (7), (8), (9), (10) 

e (11) respectivamente. Já os conjuntos de restrições (15) e (16) garantem que o 

período de indisponibilidade se iniciará em 𝑠2. É interessante notar que nessas 

inequações, com o uso do 𝑀 suficientemente grande, essas restrições apenas 

restringem de fato o espaço das soluções quando 𝑥𝑛+1,𝑗 é igual 1. 

3.3 Formulação do problema F2, ℎ𝑗1|𝑛𝑟 − 𝑎| ∑ 𝑇𝑗 

 

Com base nessas duas formulações, é proposta uma formulação que generaliza 

as duas, havendo possibilidade de haver uma restrição de disponibilidade em 

qualquer uma das máquinas ou em ambas. Nessa formulação, o período de 

indisponibilidade na primeira máquina será tratado como o job de índice n + 1 e o e o 

período de indisponibilidade na máquina 2 será tratado como o job de índice n + 2.  

Variáveis: 

𝑥𝑖𝑗: Variável binária que tem valor 1 se o job i foi programado como o j-ésimo 

job, e valor 0 caso contrário. 
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𝑆𝑟𝑗: Variável que indica o instante em que o j-ésimo job começa a ser 

processado pela máquina r 

𝑇𝑗: Variável que indica qual foi o atraso do j-ésimo job. 

Parâmetros: 

𝑝𝑟𝑖: Tempo de processamento do job i na máquina r. 

𝑑𝑖: Prazo de entrega para o job i. 

𝑠1: Instante em que começa o período de indisponibilidade na máquina 1. 

𝑠2: Instante em que começa o período de indisponibilidade na máquina 2. 

𝑀: Valor suficientemente grande. 

 

min ∑ 𝑇𝑗

𝑛

𝑗=1

 

 (23) 

∑ 𝑥𝑖𝑗

𝑛+1

𝑗=1

 =  1 𝑖 =  1, 2, . . . , 𝑛 + 2 

(24) 

∑ 𝑥𝑖𝑗

𝑛+1

𝑖=1

 =  1 𝑗 =  1, 2, . . . , 𝑛 + 2 

(25) 

𝑆1𝑗  −  𝑠1  ≤  𝑀(1 − 𝑥𝑛+1,𝑗) 𝑗 =  1,2, . . . , 𝑛 + 2 (26) 

𝑆1𝑗  −  𝑠1  ≥ − 𝑀(1 − 𝑥𝑛+1,𝑗) 𝑗 =  1,2, . . . , 𝑛 + 2 (27) 

𝑆2𝑗  −  𝑠2  ≤  𝑀(1 −  𝑥𝑛+2,𝑗) 𝑗 =  1,2, . . . , 𝑛 + 2 (28) 

𝑆2𝑗  −  𝑠2  ≥ − 𝑀(1 − 𝑥𝑛+2,𝑗) 𝑗 =  1,2, . . . , 𝑛 + 2 (29) 

𝑆𝑟,𝑗+1  ≥ 𝑆𝑟,𝑗 + ∑ 𝑝𝑟𝑖  𝑥𝑖𝑗

𝑛+1

𝑖=1

 
𝑗 =  1,2, … , 𝑛 + 1 ; 
𝑟 = 1,2 

(30) 

𝑆2,𝑗  ≥ 𝑆1,𝑗 + ∑ 𝑝1𝑖  𝑥𝑖𝑗

𝑛+1

𝑖=1

 𝑗 =  1,2, . . . , 𝑛 + 2 

(31) 

𝑆11 ≥ 0  (32) 

𝑇𝑗  ≥ 𝑆2𝑗  +  ∑ 𝑥𝑖𝑗

𝑛 + 1

𝑖=1

(𝑝2𝑖  −  𝑑𝑖) 𝑗 =  1,2, . . . , 𝑛 + 2 

(33) 

𝑇𝑗 ≥ 0  𝑗 =  1,2, . . . , 𝑛 + 2 (34) 

𝑥𝑖𝑗 ∈  {0,1} 𝑖, 𝑗 =  1,2, . . . , 𝑛 + 2 (35) 
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A função objetivo (23) é a mesma que a (1). Os conjuntos de restrições (24), (25), 

(26), (27), (30), (31), (32), (33), (34) e (35) são os mesmos que os (2), (3), (4), (5) 

(6), (7), (8), (9), (10) e (11) respectivamente do problema com restrição apenas na 

primeira máquina. Já os conjuntos de restrições (28) e (29) são os mesmos que as 

(15) e (16) do problema com restrição na segunda máquina.  

Nesses três problemas apresentados, é usado um parâmetro 𝑀 ‘suficientemente 

grande’, ou seja, que sempre tem um valor superior ao módulo do lado esquerdo da 

equação em que se encontra. Para todos esses problemas, um valor adequado de 

𝑀 é a soma do instante de início do período de indisponibilidade que começa mais 

tarde com o maior tempo de processamento de algum job em qualquer das 

máquinas: 𝑚𝑎𝑥(𝑠1, 𝑠2)  + 𝑚𝑎𝑥(𝑝𝑟𝑖) (𝑖 =  1,2, . . . , 𝑛 + 2 , 𝑟 = 1,2).  

 

3.4 Instâncias exemplo 
 

Para ilustrar o funcionamento dos modelos propostos foram criadas algumas 

instâncias exemplo, com 6 jobs cada, para apresentar uma solução ótima em cada 

modelo. Note-se que um parâmetro 𝑡𝑟 é utilizado para referir-se ao término do 

período de indisponibilidade na máquina r. 

Os dados das instâncias exemplo são apresentados na Tabela 1. 

Tabela 1: Tabela dos jobs da instância exemplo, com seus tempos de processamento e data de 
entrega. 

#𝑱𝒊 𝒑𝟏𝒊 𝒑𝟐𝒊 𝒅𝒊 

𝐽1 5 2 11 

𝐽2 3 3 15 

𝐽3 4 2 16 

𝐽4 6 1 20 

𝐽5 2 4 22 

𝐽6 3 3 26 

 

 

Além dos jobs na Tabela 1, a instância exemplo 1 tem uma janela de 

indisponibilidade na primeira máquina (M1) entre 𝑠1  =  9 e 𝑡1  =  10. 

Resolvendo essa instância através do modelo de programação linear inteira 

mista (1) com o solver Gurobi, chegou-se à sequência ótima: (J1, J3, 

Indisponibilidade M1, J2, J5, J4, J6), com atraso total de 4. 
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Figura 7: Gráfico de Gantt da solução da instância exemplo 1. A cor preta representa período de 
indisponibilidade. 

 

A instância exemplo 2 possui os mesmos jobs, porém em vez de ter 

indisponibilidade na M1 possui indisponibilidade na M2, tendo como parâmetros  

𝑠2  =  15 e 𝑡2  =  16. Resolvendo o problema através do modelo (2) chega-se à 

solução ótima: (J2, J1, J3, Indisponibilidade, J5, J4, J6), com atraso total de 1. 

 

Figura 8: Gráfico de Gantt da solução da instância exemplo 2. A cor preta representa período de 
indisponibilidade. 

Já a instância exemplo 3 possui os mesmos jobs das instâncias anteriores, e 

possui tanto a indisponibilidade na M1 como na M2 (com os mesmos parâmetros). 

Resolvendo o problema através do modelo (3) chega-se à solução ótima: (J2, J1, 

Indisponibilidade M1, Indisponibilidade M2, J3, J5, J4, J6), com atraso total de 7. 

 

Figura 9: Gráfico de Gantt da solução da instância exemplo 3. A cor preta representa período de 
indisponibilidade. 
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4 Proposta de Heurísticas Eficientes 
 

Como o problema de minimização do atraso total no flow shop de duas máquinas 

com restrições de disponibilidade é NP-Difícil, pode ser inviável resolver o problema 

com métodos exatos em um tempo aceitável. Por isso, neste capítulo proponho 

heurísticas adaptadas da literatura para resolver o problema em um tempo reduzido. 

4.1 Heurística EDD (Earliest Due Date) 

 A heurística EDD, uma das principais utilizadas para problemas de Scheduling 

de minimização do atraso, consiste em ordenar os jobs em ordem não decrescente 

pela data de entrega.  

 

4.2 Heurística NEH  

A heurística NEH, introduzida no artigo Nawaz et al. (1983), é uma das principais 

heurísticas construtivas utilizadas para problemas de flow shop permutacional, em 

especial para problemas de minimização do makespan. Essa heurística é constituída 

por 2 etapas: 

Etapa 1: Todos os jobs são ordenados segundo algum critério, por exemplo o 

LPT (Maior tempo de processamento). 

Etapa 2: Seguindo a ordem da etapa 1, os jobs são adicionados um a um à 

solução, inseridos na posição que maximiza (ou minimiza) uma dada função objetivo 

para a sequência da solução. 

Para resolver os problemas propostos nesse trabalho, será adotada a heurística 

NEH com os critérios: 

Para a etapa 1, os jobs são ordenados em ordem não decrescente de um limitante 

inferior 𝐿𝐼𝑖 =  𝑑𝑖  −   𝑝1𝑖  −   𝑝2𝑖. Esse limitante inferior representa o valor mínimo 

de atraso de cada tarefa e foi introduzido na literatura como um componente da 

regra de despacho MDD (Modified Due Date) de Baker e Bertrand (1982). Esse 

limitante foi usado (no caso geral para m máquinas) também para ordenar os jobs 

por Amentano e Ronconi (1999). 

Para a etapa 2, o critério para selecionar a posição em que o job será inserido 

foram utilizados dois critérios: Menor atraso total (da sequência parcial) e um critério 

híbrido do atraso total com o makespan. O critério atraso total é a soma dos atrasos 

de todos os jobs incluídos na sequência parcial, o que coincide com a função 

objetivo quando todos os jobs foram incluídos na sequência. O critério híbrido é o 

mesmo que o critério de atraso total, porém em caso de empate no atraso total o 

algoritmo seleciona a posição que minimiza o makespan. Nos próximos capítulos, a 
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heurística NEH com critério de atraso total e a heurística NEH com critério híbrido 

serão referidas como NEH-T e NEH-H respectivamente. 

 Para ilustrar o funcionamento da heurística NEH-H, considere a instância 

exemplo 3 – com os jobs da Tabela 1 e janelas de indisponibilidade entre 𝑠1  =  9 e 

𝑡1  =  10 na primeira máquina (M1) e entre 𝑠2  =  15 e 𝑡2  =  16 na segunda 

máquina (M2). Realizando a etapa 1 nessa instância, calcula-se o 𝐿𝐼𝑖 de cada job e 

em seguida ordenam-se os jobs em ordem não decrescente de 𝐿𝐼𝑖. O resultado 

dessa etapa 1 é apresentado na Tabela 2. Ao final da etapa 1 a ordenação dos jobs 

é (𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, 𝐽6) e será utilizada na etapa 2. 

Tabela 2: Jobs da instância exemplo ordenados em ordem não decrescente pelo Limite Inferior do 
Atraso 

#𝑱𝒊 𝒑𝟏𝒊 𝒑𝟐𝒊 𝒅𝒊 𝑳𝑰𝒊 

𝐽1 5 2 11 4 

𝐽2 3 3 15 9 

𝐽3 4 2 16 10 

𝐽4 6 1 20 13 

𝐽5 2 4 22 16 

𝐽6 3 3 26 20 

  

 Na etapa 2, cada job será inserido iterativamente na solução. Seguindo a 

ordem da Tabela 2, primeiro adiciona-se o 𝐽1. Em seguida adiciona-se o 𝐽2, e para 

isso avalia-se qual o atraso total 𝑇 e qual o makespan 𝐶𝑚𝑎𝑥 para cada uma das 

posições possíveis para inserção. Se o 𝐽2 for inserido na primeira posição (formando 

a sequência 𝐽2, 𝐽1) o 𝑇 será 0 e o 𝐶𝑚𝑎𝑥 será 10, e se for inserido na segunda posição 

(formando a sequência 𝐽1, 𝐽2) o 𝑇 será 0 e o 𝐶𝑚𝑎𝑥 será 11. Pelo critério de inserção 

híbrido usado no NEH-H, o 𝐽2 será inserido na primeira posição, pois o atraso 𝑇 

empatou e o 𝐶𝑚𝑎𝑥 é menor com a inserção na primeira posição. 

 Em seguida insere-se o job 𝐽3 e avaliam-se as sequências (𝐽3, 𝐽2, 𝐽1), (𝐽2, 𝐽3, 𝐽1) 

e (𝐽2, 𝐽1, 𝐽3) , cada uma relativa a uma possível inserção do 𝐽3. Essas possíveis 

inserções são ilustradas na Figura 10. A sequência com o menor 𝑇 é (𝐽2, 𝐽1, 𝐽3)  que 

possui atraso total igual a 2, então o 𝐽3 é inserido na terceira posição. 

 Esse processo é repetido até o último job, que nesse exemplo seria o 𝐽6, ser 

inserido à solução. Seguindo a heurística NEH-H chega-se à sequência 

(𝐽2, 𝐽1, 𝐽3, 𝐽5, 𝐽4, 𝐽6) com atraso total igual a 7. Nesse caso, a sequência gerada pela 

heurística NEH-H é igual à solução ótima do problema apresentada na Figura 9, 
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porém não há garantia de que a sequência gerada pela heurística será a solução 

ótima. 

 

 

 

Figura 10: Representação em gráfico de Gantt de cada uma das três possíveis inserções do job 𝐽3: a) 

na primeira posição, b) na segunda posição e c) na terceira posição.  
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5 Experimentos Computacionais 

Foi realizada uma análise geral comparando resultados e tempo de execução do 

método exato, das heurísticas NEH (com critério de inserção de atraso total e com 

critério de inserção híbrido) e da heurística EDD. 

Todos os experimentos foram executados em um computador com processador 

Intel Core i5 de 8GB de memória e implementados com linguagem Python 3.8. As 

formulações propostas foram resolvidas utilizando o solver Gurobi versão 9.1.0 com 

as configurações padrão.  

Nas instâncias executadas pelo Gurobi, definiu-se o tempo máximo de execução 

em 30 minutos. Quando o programa não conseguir chegar à solução ótima nesse 

tempo, utilizou-se para comparação a melhor solução encontrada e foi incluído o 

limite inferior (lower bound) encontrado. 

5.1 Instâncias 

Para avaliar o impacto das janelas de indisponibilidade no atraso total e a 

performance das heurísticas propostas, foram realizados experimentos em 

instâncias de diversos tamanhos, e com diferentes situações de indisponibilidade de 

máquinas. 

Para uma análise geral comparando os resultados dos métodos exatos com os 

das heurísticas propostas, foram geradas instâncias com número de jobs 5, 10, 15 

20, 30, 50, 60, 70, 80, 90, 100 (seguindo Xu et al. 2018). Para cada um desses 

tamanhos do problema, foram geradas 5 instâncias com os tempos de 

processamento em cada uma vindos de uma distribuição discreta uniforme entre 1 e 

100. Foram definidos períodos de indisponibilidade entre  𝑠𝑟 = (∑ 𝑝𝑟𝑖
𝑛
𝑖=1 )/2 e 𝑡𝑟 =

𝑠𝑟 + 10 (também seguindo Xu et al. 2018).  

Seguindo Armentano e Ronconi (1999), para as datas de entrega foi utilizada 

uma distribuição uniforme de inteiros entre    𝑃(1 − 𝑇 − 𝑅/2) e 𝑃(1 − 𝑇 + 𝑅/2), 

em que 𝑃 é um limite inferior do makespan, 𝑇 é o fator de atraso e 𝑅 é a amplitude 

de dispersão das datas de entrega. O limite inferior do makespan usado é 𝑃 =

min(𝑝1𝑖) + (∑ 𝑝2𝑖
𝑛
𝑖=1 ) + 𝑡2 − 𝑠2, que é uma adaptação de Pan et al. (2002) com 

o acréscimo do tempo de indisponibilidade da segunda máquina. Para a análise 

geral foram ultilizados como parâmetros 𝑇 = 0.4 e 𝑅 = 0.6,  sendo esses valores 

os utilizados para o cenário de alto fator de atraso e baixa amplitude das datas de 

entrega em Armentano e Ronconi (1999) .  

Para uma análise de sensibilidade, foram geradas instâncias com 15 jobs e 

variando os valores dos parâmetros  𝑇 e 𝑅. Foram usados 0.3, 0.4 e 0.5 como 

valores de  𝑇 e 0.5, 0.6 e 0.7 como valores de 𝑅. Para cada combinação de 𝑇 e 𝑅 
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foram geradas 50 instâncias, em que os tempos de processamento e os períodos de 

indisponibilidade seguiram o modelo utilizado para a análise geral.   

 

5.2 Análise Geral 

 Na Tabela 3 são apresentados os resultados da análise geral com o método 

exato. Nessa tabela, a coluna Upper Bound indica o atraso total na melhor solução 

encontrada, sendo essa solução ótima nas instâncias em que esse valor coincide 

com o Lower Bound. Para cálculo do gap foi utilizada a fórmula:                

𝐺𝑎𝑝(%) =
𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑−𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑
 

Na Tabela 4 são apresentados os resultados da análise geral com os métodos 

heurísticos, e na Tabela 5 são apresentados os tempos de execução com cada um 

dos métodos. 

Pode-se observar que o método exato foi capaz de encontrar a solução ótima em 

menos de 3 segundos para todas as instâncias com até 15 jobs, e em menos de 30 

minutos para todas as instâncias com até 30 jobs. Já as heurísticas NEH-T e NEH-H 

e EDD tiveram tempo de execução inferior 2 segundos para todas instâncias, sendo 

que o NEH-T e NEH-H tiveram tempo muito próximo em todas as instâncias e o EDD 

teve tempo inferior a 0,01 segundo em todas as instâncias. 

Comparando os resultados das heurísticas com o Upper Bound encontrado pelo 

método exato, observa-se que o gap médio das heurísticas NEH-T, NEH-H e EDD 

foram 15,2%, 9,4% e 49,3% respectivamente. Ademais, das 55 instâncias 

analisadas, essas heurísticas chegaram a um gap inferior a 5% em 15, 22 e 1 

instâncias respectivamente. Também é interessante notar que apenas a heurística 

NEH-H foi capaz de superar o Gurobi em algumas instâncias (em que o Gurobi não 

foi capaz de chegar na solução ótima em até 30 minutos), 4 instâncias ao todo com 

Gap médio de -1,4%. 

Considerando esses resultados, conclui-se que a heurística NEH-H teve o melhor 

desempenho e é executável em tempo muito baixo (inferior a 2 segundos) para 

instâncias de até 100 jobs. 

 

Tabela 3: Resultados da análise geral com o método exato 

# Jobs Instância 
Upper 
Bound 

Lower 
Bound 

Gap (%) 
Tempo de 

Execução (s) 

5 1 395 395 0,00 0,08 

5 2 676 676 0,00 0,05 

5 3 184 184 0,00 0,06 

5 4 429 429 0,00 0,11 
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5 5 140 140 0,00 0,06 

10 1 618 618 0,00 0,29 

10 2 747 747 0,00 0,31 

10 3 96 96 0,00 0,27 

10 4 876 876 0,00 0,23 

10 5 571 571 0,00 0,27 

15 1 736 736 0,00 1,51 

15 2 1212 1212 0,00 1,52 

15 3 1440 1440 0,00 0,39 

15 4 756 756 0,00 0,56 

15 5 408 408 0,00 2,58 

20 1 1718 1718 0,00 17,69 

20 2 343 343 0,00 3,95 

20 3 1851 1851 0,00 581,19 

20 4 2125 2125 0,00 0,78 

20 5 1973 1973 0,00 4,68 

30 1 2643 2643 0,00 5,12 

30 2 1928 1928 0,00 12,83 

30 3 2383 2383 0,00 59,41 

30 4 1722 1722 0,00 419,25 

30 5 1385 1385 0,00 1695,79  

50 1 1430 1429 0,07 1800,00  

50 2 5894 5256 10,82 1800,00  

50 3 6550 5859 10,55 1800,00  

50 4 995 995 0,00 361,33 

50 5 5515 5039 8,63 1800,00  

60 1 1897 1401 26,15 1800,00  

60 2 7088 6199 12,54 1800,00  

60 3 1642 1377 16,14 1800,00  

60 4 1133 1113 1,77 19,14 

60 5 2580 2580 0,00 1557,7 

70 1 4265 3168 25,72 1800,00  

70 2 2492 1914 23,19 1800,00  

70 3 3994 3591 10,09 1800,00  

70 4 3176 3059 3,68 1800,00  

70 5 9792 9166 6,39 1800,00  

80 1 13145 12074 8,15 1800,00  

80 2 2636 2531 3,98 1800,00  

80 3 12398 10697 13,72 1800,00  

80 4 2400 2400 0,00 159,87 

80 5 2333 2333 0,00 1233,49 

90 1 9965 9166 8,02 1800,00  

90 2 3136 3136 0,00 90,36 

90 3 6330 4713 25,55 1800,00  

90 4 11221 10887 2,98 1800,00  
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90 5 7540 6659 11,68 1800,00  

100 1 5073 4768 6,01 1800,00  

100 2 5825 5236 10,11 1800,00  

100 3 8153 5652 30,68 1800,00  

100 4 26988 24796 8,12 1800,00  

100 5 7171 4786 33,26 1800,00  

Média     5,78   

Desvio Padrão     8,93   

 

 

 

Tabela 4: Resultados da análise geral com os métodos heurísticos em comparação com o método 

exato. 

# Jobs Instância 
Upper 
Bound 

NEH-T NEH-H EDD 
Gap 

NEH-T 
(%) 

Gap 
NEH-H 

(%) 

Gap 
EDD (%) 

5 1 395 395 395 495 0,0 0,0 20,2 

5 2 676 676 676 907 0,0 0,0 25,5 

5 3 184 187 187 285 1,6 1,6 35,4 

5 4 429 429 429 757 0,0 0,0 43,3 

5 5 140 140 140 141 0,0 0,0 0,7 

10 1 618 628 628 741 1,6 1,6 16,6 

10 2 747 852 852 1093 12,3 12,3 31,7 

10 3 96 96 96 570 0,0 0,0 83,2 

10 4 876 917 931 1545 4,5 5,9 43,3 

10 5 571 577 577 1346 1,0 1,0 57,6 

15 1 736 858 854 834 14,2 13,8 11,8 

15 2 1212 1512 1250 1786 19,8 3,0 32,1 

15 3 1440 1755 1818 2207 17,9 20,8 34,8 

15 4 756 821 784 1781 7,9 3,6 57,6 

15 5 408 1012 866 1677 59,7 52,9 75,7 

20 1 1718 1777 1777 2495 3,3 3,3 31,1 

20 2 343 470 390 526 27,0 12,1 34,8 

20 3 1851 1999 1999 4700 7,4 7,4 60,6 

20 4 2125 2376 2373 2550 10,6 10,5 16,7 

20 5 1973 2410 2385 3796 18,1 17,3 48,0 

30 1 2643 2695 2774 3833 1,9 4,7 31,0 

30 2 1928 2344 2344 3061 17,7 17,7 37,0 

30 3 2383 2945 2933 6327 19,1 18,8 62,3 

30 4 1722 2279 1991 3825 24,4 13,5 55,0 

30 5 1385 1499 1471 2497 7,6 5,8 44,5 

50 1 1430 2557 1733 4331 44,1 17,5 67,0 

50 2 5894 7387 6998 12089 20,2 15,8 51,2 
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50 3 6550 8396 6837 11586 22,0 4,2 43,5 

50 4 995 1371 1045 2872 27,4 4,8 65,4 

50 5 5515 5842 5771 9966 5,6 4,4 44,7 

60 1 1897 4782 2418 8651 60,3 21,5 78,1 

60 2 7088 7091 6932 13569 0,0 -2,3 47,8 

60 3 1642 2252 2058 4846 27,1 20,2 66,1 

60 4 1133 1182 1229 3763 4,1 7,8 69,9 

60 5 2580 3235 2747 6385 20,2 6,1 59,6 

70 1 4265 4677 4389 14144 8,8 2,8 69,8 

70 2 2492 2868 2470 12096 13,1 -0,9 79,4 

70 3 3994 5387 5854 14878 25,9 31,8 73,2 

70 4 3176 3478 3383 7202 8,7 6,1 55,9 

70 5 9792 10493 10396 21203 6,7 5,8 53,8 

80 1 13145 13971 14324 22149 5,9 8,2 40,7 

80 2 2636 3663 3102 5676 28,0 15,0 53,6 

80 3 12398 12531 12351 21970 1,1 -0,4 43,6 

80 4 2400 3228 2647 4525 25,7 9,3 47,0 

80 5 2333 4412 2534 5640 47,1 7,9 58,6 

90 1 9965 11826 11690 22286 15,7 14,8 55,3 

90 2 3136 3425 3176 6592 8,4 1,3 52,4 

90 3 6330 7063 7295 19047 10,4 13,2 66,8 

90 4 11221 11718 11659 18538 4,2 3,8 39,5 

90 5 7540 9861 9504 15420 23,5 20,7 51,1 

100 1 5073 9220 5932 15316 45,0 14,5 66,9 

100 2 5825 6862 6725 12583 15,1 13,4 53,7 

100 3 8153 9095 8012 19434 10,4 -1,8 58,0 

100 4 26988 28653 28651 45047 5,8 5,8 40,1 

100 5 7171 8883 8763 21427 19,3 18,2 66,5 

Média         15,2 9,4 49,3 

Desvio Padrão         14,6 9,6 18,0 

 

 

 

 

Tabela 5: Comparação dos tempos de execução do método exato e dos métodos heurísticos. 

# Jobs Instância 
Tempo de 

Execução Gurobi 
(s) 

Tempo de 
Execução NEH-T 

(s) 

Tempo de 
Execução NEH-H 

(s) 

Tempo de 
Execução EDD (s) 

5 1 0,08 < 0,01 < 0,01 < 0,01 

5 2 0,05 < 0,01 < 0,01 < 0,01 

5 3 0,06 < 0,01 < 0,01 < 0,01 

5 4 0,11 < 0,01 < 0,01 < 0,01 

5 5 0,06 0,02 < 0,01 < 0,01 
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10 1 0,29 < 0,01 < 0,01 < 0,01 

10 2 0,31 < 0,01 < 0,01 < 0,01 

10 3 0,27 < 0,01 < 0,01 < 0,01 

10 4 0,23 0,02 < 0,01 < 0,01 

10 5 0,27 < 0,01 < 0,01 < 0,01 

15 1 1,51 < 0,01 < 0,01 < 0,01 

15 2 1,52 < 0,01 0,02 < 0,01 

15 3 0,39 < 0,01 < 0,01 < 0,01 

15 4 0,56 < 0,01 0,02 < 0,01 

15 5 2,58 < 0,01 < 0,01 < 0,01 

20 1 17,69 < 0,01 0,02 < 0,01 

20 2 3,95 < 0,01 0,02 < 0,01 

20 3 581,19 0,02 0,02 < 0,01 

20 4 0,78 0,02 0,02 < 0,01 

20 5 4,68 0,02 0,02 < 0,01 

30 1 5,12 0,03 0,03 < 0,01 

30 2 12,83 0,03 0,03 < 0,01 

30 3 59,41 0,03 0,03 < 0,01 

30 4 419,25 0,05 0,03 < 0,01 

30 5 1695,79 0,03 0,03 < 0,01 

50 1 1800,00 0,16 0,14 < 0,01 

50 2 1800,00 0,14 0,14 < 0,01 

50 3 1800,00 0,14 0,14 < 0,01 

50 4 361,33 0,16 0,14 < 0,01 

50 5 1800,00 0,16 0,16 < 0,01 

60 1 1800,00 0,23 0,25 < 0,01 

60 2 1800,00 0,25 0,25 < 0,01 

60 3 1800,00 0,25 0,25 < 0,01 

60 4 19,14 0,25 0,25 < 0,01 

60 5 1557,70 0,25 0,25 < 0,01 

70 1 1800,00 0,39 0,39 < 0,01 

70 2 1800,00 0,39 0,38 < 0,01 

70 3 1800,00 0,39 0,38 < 0,01 

70 4 1800,00 0,38 0,39 < 0,01 

70 5 1800,00 0,39 0,39 < 0,01 

80 1 1800,00 0,59 0,56 < 0,01 

80 2 1800,00 0,58 0,58 < 0,01 

80 3 1800,00 0,58 0,58 < 0,01 

80 4 159,87 0,59 0,59 < 0,01 

80 5 1233,49 0,61 0,58 < 0,01 

90 1 1800,00 0,88 0,81 < 0,01 

90 2 90,36 0,84 0,81 < 0,01 

90 3 1800,00 0,81 0,80 < 0,01 

90 4 1800,00 0,81 0,83 < 0,01 

90 5 1800,00 0,83 0,83 < 0,01 

100 1 1800,00 1,13 1,14 < 0,01 

100 2 1800,00 1,14 1,13 < 0,01 
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100 3 1800,00 1,14 1,14 < 0,01 

100 4 1800,00 1,14 1,13 < 0,01 

100 5 1800,00 1,13 1,14 < 0,01 

 

 

5.3 Análise de Sensibilidade 

 

Na Figura 11 são representados os 9 cenários de parâmetros utilizados para 

a geração das  datas de entrega, usando 0,3, 0,4 e 0,5 como valores de  𝑇 e 0,5,  

0,6 e 0,7 como valores de 𝑅. Com um parâmetro 𝑇 maior, as datas de entrega 

ficam menores (os jobs devem ser entregues mais cedo para não incorrerem em 

atraso) e como consequência o atraso total deve aumentar. Já com um 

parâmetro 𝑅 maior, as datas de entrega têm maior amplitude e variância. 

Foi realizada uma análise de sensibilidade para o problema variando os 

parâmetros  𝑇 e 𝑅 e avaliando as diferenças no gap entre a solução ótima e a 

solução encontrada pela heurística NEH-H, a heurística que apresentou a melhor 

performance na análise geral. Na Tabela 6 são apresentados os resultados do 

gap médio em unidades de tempo e na Tabela 7 são apresentados os resultados 

do gap percentual médio. 
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Figura 11: Representação dos cenários considerados para a geração das datas de entrega. P é o 
limitante inferior do makespan. 

 

Pode-se observar um aumento significativo no gap em unidades de tempo 

conforme o parâmetro 𝑇 aumenta, porém o gap percentual diminui. Já quando o 

parâmetro 𝑅 aumenta, pode-se observar um aumento sutil no gap médio tanto 

em unidades de tempo como em porcentagem, porém esse aumento é pouco 

significativo. 

Tabela 6: Resultados da análise de sensibilidade, considerando o Gap (em unidades de tempo)  
médio entre a solução ótima e a solução da heurística NEH-H. 

T / R 0,5 0,6 0,7 

0,3 89 116 89 

0,4 116 160 153 

0,5 228 212 259 

 

Tabela 7: Resultados da análise de sensibilidade, considerando o Gap (em porcentagem) médio entre 
a solução ótima e a solução da heurística NEH-H. 

P

T=0,3 

R=0,5
0,45 0,95

T=0,3 

R=0,6
0,4 1

T=0,3 

R=0,7
0,35 1,05

T=0,4 

R=0,5
0,55 1,05

T=0,4 

R=0,6
0,5 1,1

T=0,4 

R=0,7
0,45 1,15

T=0,5 

R=0,5
0,65 1,15

T=0,5 

R=0,6
0,6 1,2

T=0,5 

R=0,7
0,55 1,25



41 
 

T / R 0,5 0,6 0,7 

0,3 19.3% 24.0% 21.7% 

0,4 14.2% 17.1% 18.0% 

0,5 14.3% 13.2% 14.8% 
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6 Conclusão 

Este trabalho propôs estudo do problema de minimização do atraso total em 

um flow shop permutacional de duas máquinas com uma janela de 

indisponibilidade non-resumable em cada uma das máquinas. O problema foi 

formulado como um modelo de Programação Linear Inteira Mista e implementado 

com o solver Gurobi na linguagem Python buscar a solução ótima do problema.  

Como o problema estudado neste trabalho é NP-Difícil, não foi possível gerar 

a solução ótima para a maioria das instâncias com 50 jobs ou mais em tempo de 

até 30 minutos, e tornou-se importante propor métodos heurísticos para o 

problema. Foram propostas duas heurísticas construtivas baseadas no algoritmo 

NEH (NEH-T com critério de atraso e NEH-H com critério híbrido do atraso e do 

makespan) e a aplicação da regra de despacho EDD (Earliest Due Date). Dessas 

heurísticas propostas, a que teve melhor desempenho foi a NEH-H com gap 

médio de 9,4% nas 55 instâncias analisadas. 

Como direção para pesquisas futuras desse problema, pode ser relevante a 

proposição de novos métodos heurísticos e meta-heurísticos para resolvê-lo. 
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Apêndice A – Modelagem do Problema em Python com o 

solver Gurobi. 
 

import gurobipy as gp 

from gurobipy import GRB 

import pandas as pd 

import time 

def otimiza_gurobi(jobs,p,d,s1,s2,Major): 

    # Create Model 

    m = gp.Model("teste1") 

    m.Params.TIME_LIMIT = 1800 # Limita o tempo de execução para 30 minutos 

 

    # CREATE VARIABLES 

    X = [] 

    for i in jobs: 

        Xi = [] 

        for j in jobs: 

            Xij = m.addVar(vtype=GRB.BINARY, name="x"+str(i)+ "," +str(j)) 

            Xi.append(Xij) 

 

        X.append(Xi) 

 

    S = {} 

    for r in [1,2]: 

        Sr = [] 

        for j in jobs: 

            Srj = m.addVar(vtype=GRB.CONTINUOUS, name="S"+str(r)+ "," +str(j)) 

            Sr.append(Srj) 
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        S[r] = Sr 

 

        m.update() 

 

    T = [] 

    for j in jobs: 

        Tj = m.addVar(vtype=GRB.CONTINUOUS, name="T"+str(j)) 

        T.append(Tj) 

 

    m.update() 

 

    # CREATE CONSTRAINTS 

 

    # Função Objetivo (01) 

    obj = 0 

    for Tj in T: 

        obj = obj + Tj 

    m.setObjective(obj, GRB.MINIMIZE) 

 

    #Constraint (02) 

    for i in jobs: 

        left = 0 

        for j in jobs: 

            left = left + X[i][j] 

        m.addConstr(left == 1, ("c02-" + str(i))) 

 

    #Constraint (03) 

    for j in jobs: 

        left = 0 
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        for i in jobs: 

            left = left + X[i][j] 

        m.addConstr(left == 1, ("c03-" + str(j))) 

 

    #Constraint (04) 

    for j in jobs: 

         m.addConstr(S[1][j] - s1 <= Major - (Major * X[-2][j]), ("c04-" + str(j))) 

 

    #Constraint (05) 

    for j in jobs: 

         m.addConstr(S[1][j] - s1 >= - Major + (Major * X[-2][j]), ("c05-" + str(j))) 

 

    #Constraint (04b)       

    for j in jobs: 

         m.addConstr(S[2][j] - s2 <= Major - (Major * X[-1][j]), ("c04b-" + str(j))) 

 

    #Constraint (05b)     

    for j in jobs: 

         m.addConstr(S[2][j] - s2 >= - Major + (Major * X[-1][j]), ("c05b-" + str(j))) 

 

    #Constraint (06) 

    for r in [1,2]: 

        for j in jobs[:-1] : 

            right = S[r][j] 

            for i in jobs: 

                right = right + p[r][i] * X[i][j] 

 

            m.addConstr(S[r][j+1] >= right, ("c06-" +str(r)+ "," +str(j) )) 
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    #Constraint (07) 

 

    for j in jobs: 

        right = S[1][j] 

        for i in jobs: 

            right = right + p[1][i] * X[i][j] 

 

        m.addConstr(S[2][j] >= right, ("c07-" + str(j) )) 

 

    #Constraint (08) 

    m.addConstr(S[1][1] >= 0, ("c08")) 

 

    #Constraint (09) 

    for j in jobs: 

        right = S[2][j] 

        for i in jobs: 

            right = right + p[2][i] * X[i][j]  - d[i] * X[i][j] 

 

        m.addConstr(T[j] >= right, ("c09-" + str(j))) 

 

    #Constraint (10) 

    for j in jobs: 

        m.addConstr(T[j] >= 0, ("c10-" + str(j))) 

 

    m.update() 

 

    # OPTIMIZE 

     

    t0 = time.time() 
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    m.optimize() 

     

    t1 = time.time() 

     

    time_execution = t1-t0 

 

    #print(round(m.objVal)) 

       

    return round(m.objVal), time_execution 
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Apêndice B – Código das Heurísticas EDD, NEH-T e NEH-H 
 

import math 

import numpy as np 

from time import process_time 

from time import process_time_ns 

import time 

import random 

#Obs: Nessa implementação a M1 é representada pelo índice 0. Nas insts 1 a 3 estava pelo 

índice 1. 

 

class Job: 

    def __init__(self,i,p,d): 

        self.i=i     # número do job 

        self.p=p     # Lista dos tempos de processamento 

        self.d=d     # Due date 

        self.S=[0,0] # lista dos instantes de início em cada máquina 

        self.C=[0,0]   # lista dos instantes de conclusão em cada máquina 

        self.T= 0  # Atraso do job 

 

def calculaJob (job, S, C): 

    job.S = S 

    job.C = C 

    job.T = max(job.C[1] - job.d, 0) 

 

def calculaCmax (lista_jobs, s1=0, t1=0, s2=0, t2=0): 

    m=2 

    n = len(lista_jobs) 

    s=[[0 for i in range(m)] for j in range(n)] 
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    c=[[0 for i in range(m)] for j in range(n)] 

    p=[job.p for job in lista_jobs] 

     

    indisp1 = False # Indica se o período de indisponibilidade já ocorreu na M1 

    indisp2 = False # Indica se o período de indisponibilidade já ocorreu na M2 

     

   # Primeiro Job 

      # Primeira Máquina 

    if p[0][0] <= s1: 

        s[0][0] = 0 

        c[0][0]=p[0][0] 

    else: 

        indisp1 = True 

        s[0][0] = t1 

        c[0][0]= s[0][0] + p[0][0] 

         

      # Próxima Máquina 

    if c[0][0] + p[0][1] <= s2: 

        s[0][1] = c[0][0] 

        c[0][1] = s[0][1] + p[0][1]         

    else: 

        indisp2 = True 

        s[0][1] = max(c[0][0],t2) 

        c[0][1]= s[0][1] + p[0][1] 

         

    # Próximos Jobs 

        #Primeira Máquina 

    for j in range(1,n): 

        if (c[j-1][0] + p[j][0] <= s1) or indisp1: 
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            s[j][0] = c[j-1][0] 

            c[j][0] = s[j][0] + p[j][0] 

        else: 

            indisp1 = True 

            s[j][0] = max(c[j-1][0],t1) 

            c[j][0] = s[j][0] + p[j][0] 

             

        #Próxima Máquina  

        possible_start_m2 = max(c[j-1][1], c[j][0]) # max(previous job finished on M2, this job 

finished on M1) 

        if (possible_start_m2 + p[j][1] <= s2) or indisp2:  

            s[j][1] = possible_start_m2 

            c[j][1] = s[j][1] + p[j][1] 

             

        else: 

            indisp2 = True 

            s[j][1] = max(possible_start_m2, t2) 

            c[j][1] = s[j][1] + p[j][1] 

          

    #print(s) 

    #print(c) 

    #print(p) 

     

    total_tardiness = 0 

    for job_i in range(len(lista_jobs)): 

        calculaJob(lista_jobs[job_i], [s[job_i][0], s[job_i][1]], [c[job_i][0], c[job_i][1]]) 

        total_tardiness += lista_jobs[job_i].T 

         

    Cmax = lista_jobs[-1].C[1] 
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    return Cmax, total_tardiness 

 

def limite_inferior_atraso(job): 

    return job.d - job.p[0] - job.p[1] 

     

def ordena_jobs(lista_jobs): 

    lista_jobs.sort(key = limite_inferior_atraso) 

    return lista_jobs 

 

def NEH(lista_jobs, s1=0, t1=0, s2=0, t2=0, criterio_insercao = 'T'): 

     

    m = 2 

    n = len(lista_jobs) 

    bestSeq = [] 

    jobs_ordenados = lista_jobs.copy() 

    jobs_ordenados = ordena_jobs(jobs_ordenados) # Ordena lista por limite inferior de 

atraso 

     

    # Adicionar primeiro job 

    bestSeq.append(jobs_ordenados.pop(0)) 

     

    # Adicionar próximos jobs 

     

    while len(jobs_ordenados) > 0: 

        job_a_adicionar = jobs_ordenados.pop(0) 

         

        lista_testes = bestSeq.copy() 
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        melhorCmax = float('inf') 

        melhorT = float('inf')     

         

        for i in range(len(bestSeq) + 1): 

             

            lista_testes.insert(i, job_a_adicionar) 

            Cmax, T = calculaCmax(lista_testes, s1, t1, s2, t2) 

             

            if criterio_insercao == 'T-Cmax': 

                    if T < melhorT:        

                        index_melhor = i 

                        melhorT = T 

                        melhorCmax = Cmax 

                         

                    elif (T == melhorT) and (Cmax < melhorCmax): 

                            index_melhor = i 

                            melhorT = T 

                            melhorCmax = Cmax 

             

            else: # Critério T 

             

                if T < melhorT:       

                    index_melhor = i 

                    melhorT = T 

                 

                 

            lista_testes.pop(i) 
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        bestSeq.insert(index_melhor, job_a_adicionar) # Adiciona o job na melhor posição (em 

empate, ele fica na posição mais no começo da seq) 

             

 

     

    Cmax, T = calculaCmax(bestSeq, s1, t1, s2, t2) 

     

    #print(T) 

     

    return [bestSeq, melhorT]   

 

def csv_NEH(file_name, criterio_insercao = 'T'): 

     

    df = pd.read_csv(file_name, sep = ';', header = 0) 

    s1 = df.iloc[df.index[-1]]['num_job'] 

    t1 = df.iloc[df.index[-1]]['p1'] 

    s2 = df.iloc[df.index[-1]]['p2'] 

    t2 = df.iloc[df.index[-1]]['d'] 

 

    df_jobs = df[:-2] 

 

    lista_jobs = [] 

    for index, row in df_jobs.iterrows(): 

        lista_jobs.append(Job(i= row.num_job, 

                              p= [row.p1, row.p2], 

                              d= row.d)) 

         

    del df 

    del df_jobs 
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    #t0 = time.time() # Tempo real, não consegui com o tempo de execução 

     

    t0 = time.process_time() 

         

    lista_resultados = NEH(lista_jobs, s1, t1, s2, t2, criterio_insercao) 

     

    #t1 = time.time() 

     

    t1 = time.process_time() 

     

    time_execution = t1-t0 

     

    bestSeq = lista_resultados[0] 

    melhorT = lista_resultados[1] 

     

    return bestSeq, melhorT, time_execution 

 

def ordena_jobs_EDD(lista_jobs): 

    lista_jobs.sort(key = lambda job: job.d) 

    return lista_jobs 

 

 

def csv_EDD(file_name): 

     

    df = pd.read_csv(file_name, sep = ';', header = 0) 

    s1 = df.iloc[df.index[-1]]['num_job'] 

    t1 = df.iloc[df.index[-1]]['p1'] 

    s2 = df.iloc[df.index[-1]]['p2'] 
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    t2 = df.iloc[df.index[-1]]['d'] 

 

    df_jobs = df[:-2] 

 

    lista_jobs = [] 

    for index, row in df_jobs.iterrows(): 

        lista_jobs.append(Job(i= row.num_job, 

                              p= [row.p1, row.p2], 

                              d= row.d)) 

         

    del df 

    del df_jobs 

         

    t0 = time.process_time() 

         

    lista_resultados = ordena_jobs_EDD(lista_jobs) 

         

    t1 = time.process_time() 

     

    time_execution = t1-t0 

   

    Cmax, T = calculaCmax(lista_resultados, s1, t1, s2, t2)   

    bestSeq = lista_resultados 

    melhorT = T 

     

    return bestSeq, melhorT, time_execution 


